TY - JOUR
T1 - Exploring animal models that resemble idiopathic pulmonary fibrosis
AU - Tashiro, Jun
AU - Rubio, Gustavo A.
AU - Limper, Andrew H.
AU - Williams, Kurt
AU - Elliot, Sharon J.
AU - Ninou, Ioanna
AU - Aidinis, Vassilis
AU - Tzouvelekis, Argyrios
AU - Glassberg, Marilyn K.
N1 - Publisher Copyright:
© 2017 Tashiro, Rubio, Limper, Williams, Elliot, Ninou, Aidinis, Tzouvelekis and Glassberg.
PY - 2017
Y1 - 2017
N2 - Large multicenter clinical trials have led to two recently approved drugs for patients with idiopathic pulmonary fibrosis (IPF); yet, both of these therapies only slow disease progression and do not provide a definitive cure. Traditionally, preclinical trials have utilized mouse models of bleomycin (BLM)-induced pulmonary fibrosis-though several limitations prevent direct translation to human IPF. Spontaneous pulmonary fibrosis occurs in other animal species, including dogs, horses, donkeys, and cats. While the fibrotic lungs of these animals share many characteristics with lungs of patients with IPF, current veterinary classifications of fibrotic lung disease are not entirely equivalent. Additional studies that profile these examples of spontaneous fibroses in animals for similarities to human IPF should prove useful for both human and animal investigators. In the meantime, studies of BLM-induced fibrosis in aged male mice remain the most clinically relevant model for preclinical study for human IPF. Addressing issues such as time course of treatment, animal size and characteristics, clinically irrelevant treatment endpoints, and reproducibility of therapeutic outcomes will improve the current status of preclinical studies. Elucidating the mechanisms responsible for the development of fibrosis and disrepair associated with aging through a collaborative approach between researchers will promote the development of models that more accurately represent the realm of interstitial lung diseases in humans.
AB - Large multicenter clinical trials have led to two recently approved drugs for patients with idiopathic pulmonary fibrosis (IPF); yet, both of these therapies only slow disease progression and do not provide a definitive cure. Traditionally, preclinical trials have utilized mouse models of bleomycin (BLM)-induced pulmonary fibrosis-though several limitations prevent direct translation to human IPF. Spontaneous pulmonary fibrosis occurs in other animal species, including dogs, horses, donkeys, and cats. While the fibrotic lungs of these animals share many characteristics with lungs of patients with IPF, current veterinary classifications of fibrotic lung disease are not entirely equivalent. Additional studies that profile these examples of spontaneous fibroses in animals for similarities to human IPF should prove useful for both human and animal investigators. In the meantime, studies of BLM-induced fibrosis in aged male mice remain the most clinically relevant model for preclinical study for human IPF. Addressing issues such as time course of treatment, animal size and characteristics, clinically irrelevant treatment endpoints, and reproducibility of therapeutic outcomes will improve the current status of preclinical studies. Elucidating the mechanisms responsible for the development of fibrosis and disrepair associated with aging through a collaborative approach between researchers will promote the development of models that more accurately represent the realm of interstitial lung diseases in humans.
KW - Aged mice
KW - Asbestosis
KW - Bleomycin
KW - Idiopathic pulmonary fibrosis
KW - Murine model
UR - http://www.scopus.com/inward/record.url?scp=85041508202&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85041508202&partnerID=8YFLogxK
U2 - 10.3389/fmed.2017.00118
DO - 10.3389/fmed.2017.00118
M3 - Review article
AN - SCOPUS:85041508202
SN - 2296-858X
VL - 4
JO - Frontiers in Medicine
JF - Frontiers in Medicine
IS - JUL
M1 - 118
ER -