Exploiting motion-based redundancy to enhance microgrid polarimeter imagery

Bradley M. Ratliff, J. Scott Tyo, Wiley T. Black, Charles F. LaCasse

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Scopus citations


Microgrid polarimeters are a type of division of focal plane (DoFP) imaging polarimeter that contains a mosaic of pixel-wise micropolarizing elements superimposed upon an FPA sensor. Such a device measures a slightly different polarized state at each pixel. These measurements are combined to estimate the Stokes vector at each pixel in the image. DoFP devices have the advantage that they can obtain Stokes vector image estimates for an entire scene from a single frame capture. However, they suffer from the disadvantage that the neighboring measurements that are used to estimate the Stokes vector images are acquired at differing instantaneous fields of view (IFOV). This IFOV issue leads to false polarization signatures that significantly degrade the Stokes vector images. Interpolation and other image processing strategies can be employed to reduce IFOV artifacts; however these techniques have a limit to the amount of enhancement they can provide on a single microgrid image. Here we investigate algorithms that use multiple microgrid images that contain frame-to-frame global motion to further enhance the Stokes vector image estimates. Motion-based imagery provides additional redundancy that can be exploited to recover information that is "missing" from a single microgrid frame capture. We have found that IFOV and aliasing artifacts can be defeated entirely when these types of algorithms are applied to the data prior to Stokes vector estimation. We demonstrate results on real LWIR microgrid data using a particular resolution enhancement technique from the literature.

Original languageEnglish (US)
Title of host publicationPolarization Science and Remote Sensing IV
StatePublished - 2009
EventPolarization Science and Remote Sensing IV - San Diego, CA, United States
Duration: Aug 3 2009Aug 4 2009

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
ISSN (Print)0277-786X


OtherPolarization Science and Remote Sensing IV
Country/TerritoryUnited States
CitySan Diego, CA


  • Focal Plane Array
  • Image Processing
  • Infrared
  • Microgrid
  • Polarimeter
  • Polarimetry
  • Registration
  • Resolution Enhancement
  • Stokes Vector

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Exploiting motion-based redundancy to enhance microgrid polarimeter imagery'. Together they form a unique fingerprint.

Cite this