TY - GEN
T1 - Explainable Multi-hop Verbal Reasoning Through Internal Monologue
AU - Liang, Zhengzhong
AU - Bethard, Steven
AU - Surdeanu, Mihai
N1 - Publisher Copyright:
© 2021 Association for Computational Linguistics.
PY - 2021
Y1 - 2021
N2 - Many state-of-the-art (SOTA) language models have achieved high accuracy on several multi-hop reasoning problems. However, these approaches tend to not be interpretable because they do not make the intermediate reasoning steps explicit. Moreover, models trained on simpler tasks tend to fail when directly tested on more complex problems. We propose the Explainable multi-hop Verbal Reasoner (EVR) to solve these limitations by (a) decomposing multi-hop reasoning problems into several simple ones, and (b) using natural language to guide the intermediate reasoning hops. We implement EVR by extending the classic reasoning paradigm General Problem Solver (GPS) with a SOTA generative language model to generate subgoals and perform inference in natural language at each reasoning step. Evaluation of EVR on Clark et al. (2020)’s synthetic question answering (QA) dataset shows that EVR achieves SOTA performance while being able to generate all reasoning steps in natural language. Furthermore, EVR generalizes better than other strong methods when trained on simpler tasks or less training data (up to 35.7% and 7.7% absolute improvement respectively).
AB - Many state-of-the-art (SOTA) language models have achieved high accuracy on several multi-hop reasoning problems. However, these approaches tend to not be interpretable because they do not make the intermediate reasoning steps explicit. Moreover, models trained on simpler tasks tend to fail when directly tested on more complex problems. We propose the Explainable multi-hop Verbal Reasoner (EVR) to solve these limitations by (a) decomposing multi-hop reasoning problems into several simple ones, and (b) using natural language to guide the intermediate reasoning hops. We implement EVR by extending the classic reasoning paradigm General Problem Solver (GPS) with a SOTA generative language model to generate subgoals and perform inference in natural language at each reasoning step. Evaluation of EVR on Clark et al. (2020)’s synthetic question answering (QA) dataset shows that EVR achieves SOTA performance while being able to generate all reasoning steps in natural language. Furthermore, EVR generalizes better than other strong methods when trained on simpler tasks or less training data (up to 35.7% and 7.7% absolute improvement respectively).
UR - http://www.scopus.com/inward/record.url?scp=85121834298&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85121834298&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85121834298
T3 - NAACL-HLT 2021 - 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference
SP - 1225
EP - 1250
BT - NAACL-HLT 2021 - 2021 Conference of the North American Chapter of the Association for Computational Linguistics
PB - Association for Computational Linguistics (ACL)
T2 - 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021
Y2 - 6 June 2021 through 11 June 2021
ER -