Abstract
Quantum key distribution (QKD) enables unconditionally secure communication ensured by the laws of physics, opening a promising route to security infrastructure for the coming age of quantum computers. QKD's demonstrated secret-key rates (SKRs), however, fall far short of the gigabit-per-second rates of classical communication, hindering QKD's widespread deployment. QKD's low SKRs are largely due to existing single-photon-based protocols' vulnerability to channel loss. Floodlight QKD (FL-QKD) boosts SKR by transmitting many photons per encoding, while offering security against collective attacks. Here, we report an FL-QKD experiment operating at a 1.3 Gbit s -1 SKR over a 10 dB loss channel. To the best of our knowledge, this is the first QKD demonstration that achieves a gigabit-per-second-class SKR, representing a critical advance toward high-rate QKD at metropolitan-area distances.
| Original language | English (US) |
|---|---|
| Article number | 025007 |
| Journal | Quantum Science and Technology |
| Volume | 3 |
| Issue number | 2 |
| DOIs | |
| State | Published - Apr 2018 |
| Externally published | Yes |
Keywords
- coincidence counting
- fiber-optic communications
- homodyne detection
- quantum communications
- quantum cryptography
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics
- Materials Science (miscellaneous)
- Physics and Astronomy (miscellaneous)
- Electrical and Electronic Engineering