Experimental classical entanglement in a 16 acoustic qubit-analogue

M. Arif Hasan, Keith Runge, Pierre A. Deymier

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

The possibility of achieving and controlling scalable classically entangled, i.e., inseparable, multipartite states, would fundamentally challenge the advantages of quantum systems in harnessing the power of complexity in information science. Here, we investigate experimentally the extent of classical entanglement in a 16 acoustic qubit-analogue platform. The acoustic qubit-analogue, a.k.a., logical phi-bit, results from the spectral partitioning of the nonlinear acoustic field of externally driven coupled waveguides. Each logical phi-bit is a two-level subsystem characterized by two independently measurable phases. The phi-bits are co-located within the same physical space enabling distance independent interactions. We chose a vector state representation of the 16 -phi-bit system which lies in a 2 16-dimensional Hilbert space. The calculation of the entropy of entanglement demonstrates the possibility of achieving inseparability of the vector state and of navigating the corresponding Hilbert space. This work suggests a new direction in harnessing the complexity of classical inseparability in information science.

Original languageEnglish (US)
Article number24248
JournalScientific reports
Volume11
Issue number1
DOIs
StatePublished - Dec 2021

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Experimental classical entanglement in a 16 acoustic qubit-analogue'. Together they form a unique fingerprint.

Cite this