@inproceedings{29039d10702f48fbb4a9e598defd074a,
title = "Exoplanet Detection with Photonic Lanterns for Focal-Plane Wavefront Sensing and Control",
abstract = "Inner working angle is a key parameter for enabling scientific discovery in direct exoplanet imaging and characterization. Approaches to improving the inner working angle to reach the diffraction limit center on the sensing and control of wavefront errors, starlight suppression via coronagraphy, and differential techniques applied in post-processing. These approaches are ultimately limited by the shot noise of the residual starlight, placing a premium on the ability of the adaptive optics system to sense and control wavefront errors so that the coronagraph can effectively suppress starlight reaching the science focal plane. Photonic lanterns are attractive for use in the science focal plane because of their ability to spatially filter light using a finite basis of accepted modes and effectively couple the results to diffraction-limited spectrometers, providing a compact and cost-effective means to implement post-processing based on spectral diversity. We aim to characterize the ability of photonic lanterns to serve as focal-plane wavefront sensors, allowing the adaptive optics system to control aberrations affecting the science focal plane and reject additional stellar photon noise. By serving as focal-plane wavefront sensors, photonic lanterns can improve sensitivity to exoplanets through both direct and coronagraphic observations. We have studied the sensing capabilities of photonic lanterns in the linear and quadratic regimes with analytical and numerical treatments for different lantern geometries (including non-mode-selective, mode-selective, and hybrid geometries) as a function of port number. In this presentation we report on the sensitivity of such lanterns and comment on the relative suitability and sensitivity impacts of different lantern geometries for focal-plane wavefront sensing.",
keywords = "photonic lanterns, wavefront sensing",
author = "Jonathan Lin and Yinzi Xin and Barnaby Norris and Kim, {Yoo Jung} and Steph Sallum and Christopher Betters and Sergio Leon-Saval and Julien Lozi and Sebastien Vievard and Oliver Guyon and Pradip Gatkine and Nemanja Jovanovic and Dimitri Mawet and Fitzgerald, {Michael P.}",
note = "Publisher Copyright: {\textcopyright} 2022 SPIE.; Adaptive Optics Systems VIII 2022 ; Conference date: 17-07-2022 Through 22-07-2022",
year = "2022",
doi = "10.1117/12.2630692",
language = "English (US)",
series = "Proceedings of SPIE - The International Society for Optical Engineering",
publisher = "SPIE",
editor = "Laura Schreiber and Dirk Schmidt and Elise Vernet",
booktitle = "Adaptive Optics Systems VIII",
}