Abstract
The Nordfjord-Sogn Detachment Zone of western Norway represents an archetype for crustal-scale normal faults that are typically cited as one of the primary mechanisms responsible for the exhumation of ultrahigh-pressure (UHP) terranes. In this paper, we investigate the role of normal-sense shear zones with respect to UHP exhumation using structural geology, thermobarometry, and geochronology of the Hornelen segment of the Nordfjord-Sogn Detachment Zone. The Hornelen segment of the zone is a 2-6 km thick, top-W shear zone, primarily developed within amphibolite-grade allochthonous rocks, that juxtaposes the UHP rocks of the Western Gneiss Complex in its footwall with lower-grade allochthons and Carboniferous-Devonian Basins in its hanging wall. New thermobarometry and Sm/Nd garnet geochronology show that these top-W fabrics were initiated at lower crustal depths of 30-40 km between 410 Ma and 400 Ma. Structural geology and quartz petrofabrics indicate that top-W shear was initially relatively evenly distributed across the shear zone, and then overprinted by discrete ductile-brittle detachment faults at slower strain rates during progressive deformation and exhumation. These results require a three-stage modal for UHP exhumation in which normal-sense shear zones exhumed UHP rocks from the base of the crust along initially broad ductile shear zones that were progressively overprinted by discrete ductile-brittle structures.
Original language | English (US) |
---|---|
Pages (from-to) | 1232-1248 |
Number of pages | 17 |
Journal | Bulletin of the Geological Society of America |
Volume | 119 |
Issue number | 9-10 |
DOIs | |
State | Published - Sep 2007 |
Keywords
- Exhumation
- Hornelen Region
- Low-angle detachment
- Nordfjord-Sogn Detachment Zone
- Ultrahigh-pressure rocks
- Western Norway
ASJC Scopus subject areas
- Geology