EW-Tune: A Framework for Privately Fine-Tuning Large Language Models with Differential Privacy

Rouzbeh Behnia, Mohammadreza Reza Ebrahimi, Jason Pacheco, Balaji Padmanabhan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

27 Scopus citations

Abstract

Pre-trained Large Language Models (LLMs) are an integral part of modern AI that have led to breakthrough performances in complex AI tasks. Major AI companies with expensive infrastructures are able to develop and train these large models with billions and millions of parameters from scratch. Third parties, researchers, and practitioners are increasingly adopting these pre-trained models and fine-tuning them on their private data to accomplish their downstream AI tasks. However, it has been shown that an adversary can extract/reconstruct the exact training samples from these LLMs, which can lead to revealing personally identifiable information. The issue has raised deep concerns about the privacy of LLMs. Differential privacy (DP) provides a rigorous framework that allows adding noise in the process of training or fine-tuning LLMs such that extracting the training data becomes infeasible (i.e., with a cryptographically small success probability). While the theoretical privacy guarantees offered in most extant studies assume learning models from scratch through many training iterations in an asymptotic setting, this assumption does not hold in fine-tuning scenarios in which the number of training iterations is significantly smaller. To address the gap, we present EW-Tune, a DP framework for fine-tuning LLMs based on Edgeworth accountant with finite-sample privacy guarantees. Our results across four well-established natural language understanding (NLU) tasks show that while EW-Tune adds privacy guarantees to LLM fine-tuning process, it directly contributes to decreasing the induced noise to up to 5.6% and improves the state-of-the-art LLMs performance by up to 1.1% across all NLU tasks. We have open-sourced our implementations for wide adoption and public testing purposes.

Original languageEnglish (US)
Title of host publicationProceedings - 22nd IEEE International Conference on Data Mining Workshops, ICDMW 2022
EditorsK. Selcuk Candan, Thang N. Dinh, My T. Thai, Takashi Washio
PublisherIEEE Computer Society
Pages560-566
Number of pages7
ISBN (Electronic)9798350346091
DOIs
StatePublished - 2022
Event22nd IEEE International Conference on Data Mining Workshops, ICDMW 2022 - Orlando, United States
Duration: Nov 28 2022Dec 1 2022

Publication series

NameIEEE International Conference on Data Mining Workshops, ICDMW
Volume2022-November
ISSN (Print)2375-9232
ISSN (Electronic)2375-9259

Conference

Conference22nd IEEE International Conference on Data Mining Workshops, ICDMW 2022
Country/TerritoryUnited States
CityOrlando
Period11/28/2212/1/22

Keywords

  • Differential privacy
  • Edgeworth accountant
  • fine-tuning
  • large language models

ASJC Scopus subject areas

  • Computer Science Applications
  • Software

Fingerprint

Dive into the research topics of 'EW-Tune: A Framework for Privately Fine-Tuning Large Language Models with Differential Privacy'. Together they form a unique fingerprint.

Cite this