TY - JOUR
T1 - Evolutionary interplay between sister cytochrome P450 genes shapes plasticity in plant metabolism
AU - Liu, Zhenhua
AU - Tavares, Raquel
AU - Forsythe, Evan S.
AU - André, Francois
AU - Lugan, Raphael
AU - Jonasson, Gabriella
AU - Boutet-Mercey, Stephanie
AU - Tohge, Takayuki
AU - Beilstein, Mark A.
AU - Werck-Reichhart, Daniele
AU - Renault, Hugues
N1 - Publisher Copyright:
© The Author(s) 2016.
PY - 2016/10/7
Y1 - 2016/10/7
N2 - Expansion of the cytochrome P450 gene family is often proposed to have a critical role in the evolution of metabolic complexity, in particular in microorganisms, insects and plants. However, the molecular mechanisms underlying the evolution of this complexity are poorly understood. Here we describe the evolutionary history of a plant P450 retrogene, which emerged and underwent fixation in the common ancestor of Brassicales, before undergoing tandem duplication in the ancestor of Brassicaceae. Duplication leads first to gain of dual functions in one of the copies. Both sister genes are retained through subsequent speciation but eventually return to a single copy in two of three diverging lineages. In the lineage in which both copies are maintained, the ancestral functions are split between paralogs and a novel function arises in the copy under relaxed selection. Our work illustrates how retrotransposition and gene duplication can favour the emergence of novel metabolic functions.
AB - Expansion of the cytochrome P450 gene family is often proposed to have a critical role in the evolution of metabolic complexity, in particular in microorganisms, insects and plants. However, the molecular mechanisms underlying the evolution of this complexity are poorly understood. Here we describe the evolutionary history of a plant P450 retrogene, which emerged and underwent fixation in the common ancestor of Brassicales, before undergoing tandem duplication in the ancestor of Brassicaceae. Duplication leads first to gain of dual functions in one of the copies. Both sister genes are retained through subsequent speciation but eventually return to a single copy in two of three diverging lineages. In the lineage in which both copies are maintained, the ancestral functions are split between paralogs and a novel function arises in the copy under relaxed selection. Our work illustrates how retrotransposition and gene duplication can favour the emergence of novel metabolic functions.
UR - http://www.scopus.com/inward/record.url?scp=84990186837&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84990186837&partnerID=8YFLogxK
U2 - 10.1038/ncomms13026
DO - 10.1038/ncomms13026
M3 - Article
C2 - 27713409
AN - SCOPUS:84990186837
SN - 2041-1723
VL - 7
JO - Nature communications
JF - Nature communications
M1 - 13026
ER -