Evolutionary dynamics of origin and loss in the deep history of phospholipase D toxin genes

Matthew H.J. Cordes, Greta J. Binford

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


Background: Venom-expressed sphingomyelinase D/phospholipase D (SMase D/PLD) enzymes evolved from the ubiquitous glycerophosphoryl diester phosphodiesterases (GDPD). Expression of GDPD-like SMaseD/PLD toxins in both arachnids and bacteria has inspired consideration of the relative contributions of lateral gene transfer and convergent recruitment in the evolutionary history of this lineage. Previous work recognized two distinct lineages, a SicTox-like (ST-like) clade including the arachnid toxins, and an Actinobacterial-toxin like (AT-like) clade including the bacterial toxins and numerous fungal homologs. Results: Here we expand taxon sampling by homology detection to discover new GDPD-like SMase D/PLD homologs. The ST-like clade now includes homologs in a wider variety of arthropods along with a sister group in Cnidaria; the AT-like clade now includes additional fungal phyla and proteobacterial homologs; and we report a third clade expressed in diverse aquatic metazoan taxa, a few single-celled eukaryotes, and a few aquatic proteobacteria. GDPD-like SMaseD/PLDs have an ancient presence in chelicerates within the ST-like family and ctenophores within the Aquatic family. A rooted phylogenetic tree shows that the three clades derived from a basal paraphyletic group of proteobacterial GDPD-like SMase D/PLDs, some of which are on mobile genetic elements. GDPD-like SMase D/PLDs share a signature C-terminal motif and a shortened βα1 loop, features that distinguish them from GDPDs. The three major clades also have active site loop signatures that distinguish them from GDPDs and from each other. Analysis of molecular phylogenies with respect to organismal relationships reveals a dynamic evolutionary history including both lateral gene transfer and gene duplication/loss. Conclusions: The GDPD-like SMaseD/PLD enzymes derive from a single ancient ancestor, likely proteobacterial, and radiated into diverse organismal lineages at least in part through lateral gene transfer.

Original languageEnglish (US)
Article number194
JournalBMC Evolutionary Biology
Issue number1
StatePublished - Dec 18 2018


  • Gene loss
  • Lateral gene transfer
  • Molecular evolution
  • Phospholipase D
  • Spider venom

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics


Dive into the research topics of 'Evolutionary dynamics of origin and loss in the deep history of phospholipase D toxin genes'. Together they form a unique fingerprint.

Cite this