Evolution of the stellar-to-dark matter relation: Separating star-forming and passive galaxies from z = 1 to 0

Jeremy L. Tinker, Alexie Leauthaud, Kevin Bundy, Matthew R. George, Peter Behroozi, Richard Massey, Jason Rhodes, Risa H. Wechsler

Research output: Contribution to journalArticlepeer-review

115 Scopus citations

Abstract

We use measurements of the stellar mass function, galaxy clustering, and galaxy-galaxy lensing within the COSMOS survey to constrain the stellar-to-halo mass relation (SHMR) of star forming and quiescent galaxies over the redshift range z = [0.2, 1.0]. For massive galaxies, M ≳ 1010.6 M , our results indicate that star-forming galaxies grow proportionately as fast as their dark matter halos while quiescent galaxies are outpaced by dark matter growth. At lower masses, there is minimal difference in the SHMRs, implying that the majority low-mass quiescent galaxies have only recently been quenched of their star formation. Our analysis also affords a breakdown of all COSMOS galaxies into the relative numbers of central and satellite galaxies for both populations. At z = 1, satellite galaxies dominate the red sequence below the knee in the stellar mass function. But the number of quiescent satellites exhibits minimal redshift evolution; all evolution in the red sequence is due to low-mass central galaxies being quenched of their star formation. At M ∼ 1010 M , the fraction of central galaxies on the red sequence increases by a factor of 10 over our redshift baseline, while the fraction of quenched satellite galaxies at that mass is constant with redshift. We define a "migration rate" to the red sequence as the time derivative of the passive galaxy abundances. We find that the migration rate of central galaxies to the red sequence increases by nearly an order of magnitude from z = 1 to z = 0. These results imply that the efficiency of quenching star formation for centrals is increasing with cosmic time, while the mechanisms that quench the star formation of satellite galaxies in groups and clusters is losing efficiency.

Original languageEnglish (US)
Article number93
JournalAstrophysical Journal
Volume778
Issue number2
DOIs
StatePublished - Dec 1 2013
Externally publishedYes

Keywords

  • cosmology: observations
  • galaxies: evolution
  • galaxies: halos

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Evolution of the stellar-to-dark matter relation: Separating star-forming and passive galaxies from z = 1 to 0'. Together they form a unique fingerprint.

Cite this