Abstract
The microstructural changes that occur during annealing of ultra-thin oxygen-implanted silicon-on-insulator have been studied using transmission electron microscopy (TEM), Rutherford backscattering spectrometry (RBS), and Auger electron spectroscopy (AES). Silicon substrates were implanted at 65 kev with a dose of 4.5 × 1017 O+ cm-2, followed by annealing at various temperatures. TEM results show that the defects observed in the as-implanted material (stacking faults and {1 1 3} defects) were reduced after annealing at 900 °C for 2 h and were eliminated after annealing at 1100°C for 2 h. A continuous buried oxide (BOX) layer was formed after annealing at 1300°C for 6h. Numerous silicon islands were present in the BOX layer. The silicon islands can be traced to a precursor structure that developed at the implantation step. RBS results indicate that the crystallinity of the top Si layer is significantly restored after annealing at 1100 °C for 2 h and is completely restored after annealing at 1300°C for 6 h. It was also found through AES analysis that the redistribution of oxygen during annealing is initiated at 1100°C.
Original language | English (US) |
---|---|
Pages (from-to) | 303-308 |
Number of pages | 6 |
Journal | Journal of Materials Science: Materials in Electronics |
Volume | 13 |
Issue number | 5 |
DOIs | |
State | Published - May 2002 |
Externally published | Yes |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Condensed Matter Physics
- Electrical and Electronic Engineering