TY - JOUR
T1 - Evidence for geologically recent explosive volcanism in Elysium Planitia, Mars
AU - Horvath, David G.
AU - Moitra, Pranabendu
AU - Hamilton, Christopher W.
AU - Craddock, Robert A.
AU - Andrews-Hanna, Jeffrey C.
N1 - Publisher Copyright:
© 2021 Elsevier Inc.
PY - 2021/9/1
Y1 - 2021/9/1
N2 - Volcanic activity on Mars peaked during the Noachian and Hesperian periods but has continued since then in isolated locales. Elysium Planitia hosts numerous young, fissure-fed flood lavas with ages ranging from approximately 500 to 2.5 million years (Ma). We present evidence for a fine-grained unit that is atypical of aeolian deposits in the region and may be the youngest volcanic deposit yet documented on Mars. The unit has a low albedo, high thermal inertia, includes high‑calcium pyroxene-rich material, and is distributed symmetrically around a segment of the Cerberus Fossae fissure system in Elysium Planitia. This deposit is superficially similar to features interpreted as pyroclastic deposits on the Moon and Mercury. Unlike previously documented lava flows in Elysium Planitia, this feature is morphologically consistent with a fissure-fed pyroclastic deposit, mantling the surrounding lava flows with a thickness on the order of tens of cm over most of the deposit and a volume of 1.1–2.8 × 107 m3. Thickness and volume estimates are consistent with tephra deposits on Earth. Stratigraphic relationships indicate a relative age younger than the surrounding volcanic plains and the Zunil impact crater (~0.1–1 Ma), with crater counting suggesting that the deposit has an absolute model age of 53 ± 7 to 210 ± 12 ka. This young age implies that if this deposit is volcanic then the Cerberus Fossae region may not be extinct and that Mars may still be volcanically active. This interpretation is consistent with the identification of seismicity in this region by the Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight) lander, and has additional implications for astrobiology.
AB - Volcanic activity on Mars peaked during the Noachian and Hesperian periods but has continued since then in isolated locales. Elysium Planitia hosts numerous young, fissure-fed flood lavas with ages ranging from approximately 500 to 2.5 million years (Ma). We present evidence for a fine-grained unit that is atypical of aeolian deposits in the region and may be the youngest volcanic deposit yet documented on Mars. The unit has a low albedo, high thermal inertia, includes high‑calcium pyroxene-rich material, and is distributed symmetrically around a segment of the Cerberus Fossae fissure system in Elysium Planitia. This deposit is superficially similar to features interpreted as pyroclastic deposits on the Moon and Mercury. Unlike previously documented lava flows in Elysium Planitia, this feature is morphologically consistent with a fissure-fed pyroclastic deposit, mantling the surrounding lava flows with a thickness on the order of tens of cm over most of the deposit and a volume of 1.1–2.8 × 107 m3. Thickness and volume estimates are consistent with tephra deposits on Earth. Stratigraphic relationships indicate a relative age younger than the surrounding volcanic plains and the Zunil impact crater (~0.1–1 Ma), with crater counting suggesting that the deposit has an absolute model age of 53 ± 7 to 210 ± 12 ka. This young age implies that if this deposit is volcanic then the Cerberus Fossae region may not be extinct and that Mars may still be volcanically active. This interpretation is consistent with the identification of seismicity in this region by the Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight) lander, and has additional implications for astrobiology.
KW - Mars
KW - Pyroclastic
KW - Volcanology
UR - http://www.scopus.com/inward/record.url?scp=85105273931&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85105273931&partnerID=8YFLogxK
U2 - 10.1016/j.icarus.2021.114499
DO - 10.1016/j.icarus.2021.114499
M3 - Article
AN - SCOPUS:85105273931
SN - 0019-1035
VL - 365
JO - Icarus
JF - Icarus
M1 - 114499
ER -