Evaluation of flow and sediment models for the Rillito river

Jennifer G. Duan, Anu Acharya, Mary Yaeger, Shiyan Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Hydrodynamic and sediment transport models are useful engineering tools for predicting flood flow. Many models such as HEC-RAS, HEC-6, IALLUVIAL, SRH-1D were developed for perennial rivers, and may not be suitable to ephemeral rivers in arid and semi-arid regions. This paper outlines a comparison study that examined the water surface and bed elevations of a flood event exceeding 100-year flood in the Rillito River at Tucson, Arizona. The result of IALLUVIAL2, HEC-RAS and GSTAR1D models were compared with field survey data. Results showed that IALLUVIAL2, which cannot compute bridge effects, predicted a flood similar to that of the more commonly used HEC-RAS model, which take bridges into account. Both models underestimated the flooding by about 2 to 4 feet, but accurately predicted the progression of each flood flow. This study also found the most appropriate sediment transport and roughness equations for this particular river are Laursen sediment equation and Manning's relation. The results indicated the need of an appropriate model for predicting flood flows in ephemeral streams for water resource managers, engineers, and urban planners.

Original languageEnglish (US)
Title of host publicationWorld Environmental and Water Resources Congress 2008
Subtitle of host publicationAhupua'a - Proceedings of the World Environmental and Water Resources Congress 2008
DOIs
StatePublished - 2008
EventWorld Environmental and Water Resources Congress 2008: Ahupua'a - Honolulu, HI, United States
Duration: May 12 2008May 16 2008

Publication series

NameWorld Environmental and Water Resources Congress 2008: Ahupua'a - Proceedings of the World Environmental and Water Resources Congress 2008
Volume316

Other

OtherWorld Environmental and Water Resources Congress 2008: Ahupua'a
Country/TerritoryUnited States
CityHonolulu, HI
Period5/12/085/16/08

Keywords

  • Arizona
  • Floods
  • Rivers
  • Sediment

ASJC Scopus subject areas

  • Management, Monitoring, Policy and Law
  • Water Science and Technology
  • Pollution

Fingerprint

Dive into the research topics of 'Evaluation of flow and sediment models for the Rillito river'. Together they form a unique fingerprint.

Cite this