Evaluation of Down-scatter Contamination in Multi-Pinhole 123I-IMP Brain Perfusion SPECT Imaging

Benjamin Auer, Jan De Beenhouwer, Kesava S. Kalluri, Clifford Lindsay, R. Garrett Richards, Micaehla May, Matthew A. Kupinski, Phillip H. Kuo, Lars R. Furenlid, Michael A. King

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Brain imaging with 123I radionuclide remains essential to assess the dopamine transporter activity or cerebral blood flow in various cerebral disorders. However, imaging with 123I-labeled tracers suffers from down-scatter contaminations from the emission of a series of high-energy (>183 keV, ~3% abundance) gamma photons in addition to the primary photons (159 keV, 83% abundance). In this work, we investigated through simulation studies the effect of down-scatter contamination on image quality using multiple pinhole configurations and aperture sizes of AdaptiSPECT-C, which is a next-generation multi-pinhole system currently under construction. We simulated a brain phantom with source distribution for the perfusion imaging agent 123I-IMP as imaged 1h post injection. To enable comparison of imaging without down-scatter interactions, reconstructions were compared qualitatively and quantitively to the ones obtained from acquisition of similar activity distribution simulated for solely the 159-keV principal emission of 123I. In this initial study, we demonstrated through quantification and visual inspection of cerebral perfusion reconstruction incorporating down-scatter correction that the inclusion of down-scatter counts does not hamper the imaging performance of AdaptiSPECT-C even for the pinhole combination the most contaminated by such interactions. We have initiated a comparison of these findings against the ones obtained from a dual-head system employing parallel-hole collimator for which acquisition is considerably more impacted by down-scatter interactions.

Original languageEnglish (US)
Title of host publication2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record, NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors, RTSD 2022
EditorsHideki Tomita, Tatsuya Nakamura
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781665421133
DOIs
StatePublished - 2021
Event2021 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2021 - Virtual, Yokohama, Japan
Duration: Oct 16 2021Oct 23 2021

Publication series

Name2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record, NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors, RTSD 2022

Conference

Conference2021 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2021
Country/TerritoryJapan
CityVirtual, Yokohama
Period10/16/2110/23/21

Keywords

  • AdaptiSPECT-C
  • GATE Monte-Carlo simulation
  • I-IMP SPECT imaging
  • cerebral blood-flow perfusion
  • down-scatter contaminations

ASJC Scopus subject areas

  • Nuclear Energy and Engineering
  • Health Informatics
  • Radiology Nuclear Medicine and imaging
  • Nuclear and High Energy Physics

Fingerprint

Dive into the research topics of 'Evaluation of Down-scatter Contamination in Multi-Pinhole 123I-IMP Brain Perfusion SPECT Imaging'. Together they form a unique fingerprint.

Cite this