Abstract
Snow contributes to regional and global water budgets, and is of critical importance to water resources management and our society. Along with advancement in remote sensing tools and techniques to retrieve snowfall, verification and refinement of these estimates need to be performed using ground-validation datasets. A comprehensive evaluation of the Multi-Radar/Multi-Sensor (MRMS) snowfall products and Integrated Multi-satellitE Retrievals for GPM (Global Precipitation Measurement) (IMERG) precipitation products is conducted using the Snow Telemetry (SNOTEL) daily precipitation and Snow Water Equivalent (SWE) datasets. Severe underestimations are found in both radar and satellite products. Comparisons are conducted as functions of air temperature, snowfall intensity, and radar beam height, in hopes of resolving the discrepancies between measurements by remote sensing and gauge, and finally developing better snowfall retrieval algorithms in the future.
Original language | English (US) |
---|---|
Article number | 904 |
Journal | Remote Sensing |
Volume | 8 |
Issue number | 11 |
DOIs | |
State | Published - 2016 |
Externally published | Yes |
Keywords
- GPM
- QPE
- SWE
- Weather radar
ASJC Scopus subject areas
- General Earth and Planetary Sciences