Estimation ROC curves and their corresponding ideal observers

Eric Clarkson

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations


The LROC curve may be generalized in two ways. We can replace the location of the signal with an arbitrary set of parameters that we wish to estimate. We can also replace the binary function that determines whether an estimate is correct by a utility function that measures the usefulness of a particular estimate given the true parameter set. The expected utility for the true-positive detections may then be plotted versus the false-positive fraction as the detection threshold is varied to generate an estimation ROC curve (EROC). Suppose we run a 2AFC study where the observer must decide which image has the signal and then estimate the parameter set. Then the average value of the utility on those image pairs where the observer chooses the correct image is an estimate of the area under the EROC curve (AEROC). The ideal LROC observer may also be generalized to the ideal EROC observer, whose EROC curve lies above those of all other observers. When the utility function is non-negative the ideal EROC observer shares many properties with the ideal ROC observer, which can simplify the calculation of the ideal AEROC. When the utility function is concave the ideal EROC observer makes use of the posterior mean estimator. Other estimators that arise as special cases include maximum a posteriori estimators and maximum likelihood estimators. Multiple signals may be accomodated in this framework by making the number of signals one of the parameters in the set to be estimated.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2007
Subtitle of host publicationImage Perception, Observer Performance, and Technology Assessment
StatePublished - 2007
EventMedical Imaging 2007: Image Perception, Observer Performance, and Technology Assessment - San Diego, CA, United States
Duration: Feb 21 2007Feb 22 2007

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
ISSN (Print)1605-7422


OtherMedical Imaging 2007: Image Perception, Observer Performance, and Technology Assessment
Country/TerritoryUnited States
CitySan Diego, CA


  • Estimation
  • Image quality
  • ROC analysis

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'Estimation ROC curves and their corresponding ideal observers'. Together they form a unique fingerprint.

Cite this