Entanglement distribution in pure-state quantum networks

Sébastien Perseguers, J. Ignacio Cirac, Antonio Acín, MacIej Lewenstein, Jan Wehr

Research output: Contribution to journalArticlepeer-review

74 Scopus citations

Abstract

We investigate entanglement distribution in pure-state quantum networks. We consider the case when nonmaximally entangled two-qubit pure states are shared by neighboring nodes of the network. For a given pair of nodes, we investigate how to generate the maximal entanglement between them by performing local measurements, assisted by classical communication, on the other nodes. We find optimal measurement protocols for both small and large one-dimensional networks. Quite surprisingly, we prove that Bell measurements are not always the optimal ones to perform in such networks. We generalize then the results to simple small two-dimensional (2D) networks, finding again counterintuitive optimal measurement strategies. Finally, we consider large networks with hierarchical lattice geometries and 2D networks. We prove that perfect entanglement can be established on large distances with probability one in a finite number of steps, provided the initial entanglement shared by neighboring nodes is large enough. We discuss also various protocols of entanglement distribution in 2D networks employing classical and quantum percolation strategies.

Original languageEnglish (US)
Article number022308
JournalPhysical Review A - Atomic, Molecular, and Optical Physics
Volume77
Issue number2
DOIs
StatePublished - Feb 7 2008

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Entanglement distribution in pure-state quantum networks'. Together they form a unique fingerprint.

Cite this