Entanglement Assisted Radars Operated over Strong Atmospheric Turbulence Channels

Ivan B. Djordjevic, Vijay Nafria

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

In this invited paper we review our recent research activities on experimental demonstration of entanglement based (EB) radars, operated over strong atmospheric turbulence channels. In conventional EB communications, sensing, and radars the phase-conjugation, required before homodyne detection takes place, is performed on received signal photons. In atmospheric turbulent channels, the signal photons are affected by diffraction, absorption, scattering, and atmospheric turbulence effects so that only limited number of weak target probe returned signal photons reach the receiver side in EB radars. Moreover, it is extremely difficult to perform any phase-conjugation on weak signal photons when the average number of received photons is <<1. To solve this problem, we have recently proposed to perform phase-conjugation on bright idler photons instead. Namely, we perform the wavelength conversion by the PPLN waveguide on bright idler photons, so that the idler photons will have the same wavelength as the signal photons, and after that we use a classical homodyne balanced detector as an entanglement assisted detector. To generate entangled photon pairs, we use C-/L-band tunable laser, EDFA, the PPLN waveguide, and WDM demultiplexers. To demonstrate the high-potential of the proposed EB radar concept, we developed an experimental outdoor free-space optical (FSO) testbed at the University of Arizona campus. Using this FSO testbed we experimentally demonstrate that the proposed EB radar significantly outperforms the corresponding classical counterpart and can operate in strong turbulence regime. To improve the detection probabilities further, we use deformable mirror-based adaptive optics.

Original languageEnglish (US)
Title of host publicationProceedings - 2024 24th International Conference on Transparent Optical Networks, ICTON 2024
EditorsFrancesco Prudenzano, Marian Marciniak
PublisherIEEE Computer Society
ISBN (Electronic)9798350377309
DOIs
StatePublished - 2024
Event24th International Conference on Transparent Optical Networks, ICTON 2024 - Bari, Italy
Duration: Jul 14 2024Jul 18 2024

Publication series

NameInternational Conference on Transparent Optical Networks
ISSN (Print)2162-7339

Conference

Conference24th International Conference on Transparent Optical Networks, ICTON 2024
Country/TerritoryItaly
CityBari
Period7/14/247/18/24

Keywords

  • Entanglement
  • entanglement assisted detection
  • quantum radars
  • quantum sensing
  • radars

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Electrical and Electronic Engineering
  • Electronic, Optical and Magnetic Materials

Fingerprint

Dive into the research topics of 'Entanglement Assisted Radars Operated over Strong Atmospheric Turbulence Channels'. Together they form a unique fingerprint.

Cite this