Entanglement-Assisted Communication Surpassing the Ultimate Classical Capacity

Shuhong Hao, Haowei Shi, Wei Li, Jeffrey H. Shapiro, Quntao Zhuang, Zheshen Zhang

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Entanglement underpins a variety of quantum-enhanced communication, sensing, and computing capabilities. Entanglement-assisted communication (EACOMM) leverages entanglement preshared by communicating parties to boost the rate of classical information transmission. Pioneering theory works showed that EACOMM can enable a communication rate well beyond the ultimate classical capacity of optical communications, but an experimental demonstration of any EACOMM advantage remains elusive. In this Letter we report the implementation of EACOMM surpassing the classical capacity over lossy and noisy bosonic channels. We construct a high-efficiency entanglement source and a phase-conjugate quantum receiver to reap the benefit of preshared entanglement, despite entanglement being broken by channel loss and noise. We show that EACOMM beats the Holevo-Schumacher-Westmoreland capacity of classical communication by up to 16.3%, when both protocols are subject to the same power constraint at the transmitter. As a practical performance benchmark, we implement a classical communication protocol with the identical characteristics for the encoded signal, showing that EACOMM can reduce the bit-error rate by up to 69% over the same bosonic channel. Our work opens a route to provable quantum advantages in a wide range of quantum information processing tasks.

Original languageEnglish (US)
Article number250501
JournalPhysical review letters
Volume126
Issue number25
DOIs
StatePublished - Jun 25 2021
Externally publishedYes

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Entanglement-Assisted Communication Surpassing the Ultimate Classical Capacity'. Together they form a unique fingerprint.

Cite this