eNOS, a pressure-dependent regulator of intraocular pressure

W. Daniel Stamer, Yuan Lei, Alexandra Boussommier-Calleja, Darryl R. Overby, C. Ross Ethier

Research output: Contribution to journalArticlepeer-review

115 Scopus citations

Abstract

Purpose. Pathology in the primary drainage pathway for aqueous humor in the eye is responsible for ocular hypertension, the only treatable risk factor in patients with glaucoma. Unfortunately, the mechanisms that regulate pressure-dependent drainage of aqueous humor and thus intraocular pressure (IOP) are unknown. To better understand one possible underlying molecular factor that regulates IOP, nitric oxide (NO), pressure-dependent drainage in transgenic mice overexpressing endothelial NO synthase (eNOS) was studied. Methods. IOP was measured by rebound tonometry in mice, and pressure versus flow data were measured by ex vivo perfusion at multiple pressures between 8 and 45 mm Hg, using mock AH ±100 μM L-NAME. A subset of eyes was examined histologically using standard techniques or was assayed for fusion protein expression by Western blot analysis. Results. IOP was lower (9.6 ± 2.7 vs. 11.4 ± 2.5 mm Hg; mean ± SD; P = 0.04) and pressure-dependent drainage was higher (0.0154 ± 0.006 vs. 0.0066 ± 0.0009 μL/min/mm Hg; P = 0.002) in the transgenic mice than in the wild-type animals; however, pressure-independent drainage was unaffected. The NOS inhibitor L-NAME normalized pressure-dependent drainage in transgenic animals. For IOP >35 mm Hg, the slope of the pressure-flow curve in wild-type mice increased to match that seen in transgenic mice. Shear stress in the pressure-dependent pathway at elevated pressures was calculated to be in a range known to affect eNOS expression and activity in vascular endothelia. Conclusions. Endothelial NOS overexpression lowers IOP by increasing pressure-dependent drainage in the mouse eye. Data are consistent with NO's having a mechanoregulatory role in aqueous humor dynamics, with eNOS induction at elevated IOPs leading to increased pressure-dependent outflow.

Original languageEnglish (US)
Pages (from-to)9438-9444
Number of pages7
JournalInvestigative Ophthalmology and Visual Science
Volume52
Issue number13
DOIs
StatePublished - Dec 2011
Externally publishedYes

ASJC Scopus subject areas

  • Ophthalmology
  • Sensory Systems
  • Cellular and Molecular Neuroscience

Fingerprint

Dive into the research topics of 'eNOS, a pressure-dependent regulator of intraocular pressure'. Together they form a unique fingerprint.

Cite this