Abstract
Clinical performance of currently available human skin equivalents is limited by failure to develop perfusion. To address this problem we have developed a method of endothelial cell transplantation that promotes vascularization of human skin equivalents in vivo. Enhancement of vascularization by Bcl-2 overexpression was demonstrated by seeding human acellular dermis grafts with human umbilical vein endothelial cells (HUVEC) transduced with the survival gene Bcl-2 or an EGFP control transgene, and subcutaneous implantation in immunodeficient mice (n=18). After 1 month the grafts with Bcl-2-transduced cells contained a significantly greater density of perfused HUVEC-lined microvessels (55.0/mm3) than controls (25.4/mm3,P=0.026). Vascularized skin equivalents were then constructed by sequentially seeding the apical and basal surfaces of acellular dermis with cultured human keratinocytes and Bcl-2-transduced HUVEC, respectively. Two weeks after orthotopic implantation onto mice, 75% of grafts (n=16) displayed both a differentiated human epidermis and perfusion through HUVEC-lined microvessels. These vessels, which showed evidence of progressive maturation, accelerated the rate of graft vascularization. Successful transplantation of such vascularized human skin equivalents should enhance clinical utility, especially in recipients with impaired angiogenesis.
Original language | English (US) |
---|---|
Pages (from-to) | 2250-2256 |
Number of pages | 7 |
Journal | FASEB Journal |
Volume | 17 |
Issue number | 15 |
DOIs | |
State | Published - Dec 2003 |
Externally published | Yes |
Keywords
- HUVEC
- Transplantation
- Vascularization
ASJC Scopus subject areas
- Biotechnology
- Biochemistry
- Molecular Biology
- Genetics