Engineering graphics in a community-college setting: Challenges and opportunities

Research output: Contribution to journalConference articlepeer-review

Abstract

This evidence-based practice paper describes a study of the efficacy of several engineering education pedagogy practices in an engineering graphics course at a large community college in the southwestern US. The student population at community colleges is typically diverse and has a larger proportion of non-traditional students relative to four-year institutions. Most studies of engineering graphics research are conducted at four-year institutions, but results derived from the more diverse student populations at community colleges could help develop more general strategies to improve retention of underrepresented groups in engineering. In this paper, we survey some of the unique demographic and social challenges of community college students and assess the following pedagogical strategies derived from previous literature: lab activities, active learning, and improving spatial visualization ability. Lab activities and content that encourage active learning have been previously cited as effective strategies for engaging nontraditional students. Spatial visualization ability has been shown to impact learning outcomes in engineering graphics courses, and activities like sketching have been shown to help students with low spatial visualization. This study focuses on an introductory engineering graphics course that teaches modeling and assembly and drawing creation in SolidWorks, a 3D computer-aided-design software. We discuss the impact of lab time, active learning activities, and sketching activities on student's self-efficacy and perceived learning, as well as connections between spatial visualization ability and learning outcomes. Students reported a large increase in their 3D-modeling self-efficacy over the semester and agreed that working on CAD during lab time and following along with instructor demos were helpful to their learning. In an attempt to improve spatial visualization ability of the students, sketching components were included during the course. The average spatial visualization skills of the students improved over the semester, but students had mixed agreement about whether the sketching activities were helpful for learning course material. Our results are compared to previously reported findings from four-year institutions and other community colleges, when available. We highlight promising strategies to promote learning and confidence for diverse student populations learning engineering graphics, which could potentially improve retention at other community colleges and four-year institutions.

Original languageEnglish (US)
Article number597
JournalASEE Annual Conference and Exposition, Conference Proceedings
Volume2020-June
StatePublished - Jun 22 2020
Externally publishedYes
Event2020 ASEE Virtual Annual Conference, ASEE 2020 - Virtual, Online
Duration: Jun 22 2020Jun 26 2020

ASJC Scopus subject areas

  • General Engineering

Fingerprint

Dive into the research topics of 'Engineering graphics in a community-college setting: Challenges and opportunities'. Together they form a unique fingerprint.

Cite this