TY - JOUR
T1 - Endothelin induction of inositol phospholipid hydrolysis, sarcomere assembly, and cardiac gene expression in ventricular myocytes. A paracrine mechanism for myocardial cell hypertrophy
AU - Shubeita, H. E.
AU - McDonough, P. M.
AU - Harris, A. N.
AU - Knowlton, K. U.
AU - Glembotski, C. C.
AU - Brown, J. H.
AU - Chien, K. R.
PY - 1990
Y1 - 1990
N2 - The present study examined the effects of endothelin-1 on phosphoinositide hydrolysis, diacylglycerol formation, and the induction of myocardial cell hypertrophy utilizing a well characterized cultured neonatal rat myocardial cell model. In this system, a hypertrophic response can be assessed by increases in myocardial cell size, an increase in the assembly of an individual contractile protein (myosin light chain-2) into organized contractile units, accumulation of contractile proteins, the activation of a program of immediate early gene expression, and the induction of genes encoding contractile and embryonic proteins (Iwaki, K., Sukhatme, V., Shubeita, H.E., Chien, K.R., (1990) J. Biol. Chem. 265, 13809-13817). Utilizing these criteria, the present study documents that stimulation with endothelin-1 can produce myocardial cell hypertrophy, induce the expression and release of ANF in ventricular cells, and can activate the transcription of cardiac-specific genes. In addition, endothelin-1 stimulates phosphoinositide hydrolysis and the accumulation of diacylglycerol. It is proposed that endothelin-1 stimulation may represent an important paracrine mechanism for the in vivo regulation of cardiac growth and hypertrophy.
AB - The present study examined the effects of endothelin-1 on phosphoinositide hydrolysis, diacylglycerol formation, and the induction of myocardial cell hypertrophy utilizing a well characterized cultured neonatal rat myocardial cell model. In this system, a hypertrophic response can be assessed by increases in myocardial cell size, an increase in the assembly of an individual contractile protein (myosin light chain-2) into organized contractile units, accumulation of contractile proteins, the activation of a program of immediate early gene expression, and the induction of genes encoding contractile and embryonic proteins (Iwaki, K., Sukhatme, V., Shubeita, H.E., Chien, K.R., (1990) J. Biol. Chem. 265, 13809-13817). Utilizing these criteria, the present study documents that stimulation with endothelin-1 can produce myocardial cell hypertrophy, induce the expression and release of ANF in ventricular cells, and can activate the transcription of cardiac-specific genes. In addition, endothelin-1 stimulates phosphoinositide hydrolysis and the accumulation of diacylglycerol. It is proposed that endothelin-1 stimulation may represent an important paracrine mechanism for the in vivo regulation of cardiac growth and hypertrophy.
UR - http://www.scopus.com/inward/record.url?scp=0025221348&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0025221348&partnerID=8YFLogxK
M3 - Article
C2 - 2173712
AN - SCOPUS:0025221348
VL - 265
SP - 20555
EP - 20562
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
SN - 0021-9258
IS - 33
ER -