Abstract
Parathyroid hormone (PTH) increases fibroblast growth factor receptor-1 (FGFR1) and fibroblast growth factor-2 (FGF-2) expression in osteoblasts and the anabolic response to PTH is reduced in Fgf2-/- mice. This study examined whether candidate factors implicated in the anabolic response to PTH were modulated in Fgf2-/- osteoblasts. PTH increased Runx-2 protein expression in Fgf2+/+ but not Fgf2-/- osteoblasts. By immunocytochemistry, PTH treatment induced nuclear accumulation of Runx-2 only in Fgf2+/+ osteoblasts. PTH and FGF-2 regulate Runx-2 via activation of the cAMP response element binding proteins (CREBs). Western blot time course studies showed that PTH increased phospho-CREB within 15 min that was sustained for 24 h in Fgf2+/+but had no effect in Fgf2-/- osteoblasts. Silencing of FGF-2 in Fgf2+/+ osteoblasts blocked the stimulatory effect of PTH on Runx-2 and CREBs phosphorylation. Studies of the effects of PTH on proteins involved in osteoblast precursor proliferation and apoptosis showed that PTH increased cyclinD1-cdk4/6 protein in Fgf2+/+ but not Fgf2-/- osteoblasts. Interestingly, PTH increased the cell cycle inhibitor p21/waf1 in Fgf2-/- osteoblasts. PTH increased Bcl-2/Bax protein ratio in Fgf2+/+ but not Fgf2-/- osteoblasts. In addition PTH increased cell viability in Fgf2+/+ but not Fgf2-/- osteoblasts. These data suggest that endogenous FGF-2 is important in PTH effects on osteoblast proliferation, differentiation, and apoptosis. Reduced expression of these factors may contribute to the reduced anabolic response to PTH in the Fgf2-/- mice. Our results strongly indicate that the anabolic PTH effect is dependent in part on FGF-2 expression. J. Cell. Physiol.219: 143-151,2009.
Original language | English (US) |
---|---|
Pages (from-to) | 143-151 |
Number of pages | 9 |
Journal | Journal of Cellular Physiology |
Volume | 219 |
Issue number | 1 |
DOIs | |
State | Published - Apr 2009 |
ASJC Scopus subject areas
- Physiology
- Clinical Biochemistry
- Cell Biology