TY - JOUR
T1 - Endocytosis of the type III transforming growth factor-β (TGF-β) receptor through the clathrin-independent/lipid raft pathway regulates TGF-β signaling and receptor down-regulation
AU - Finger, Elizabeth C.
AU - Lee, Nam Y.
AU - You, Hye Jin
AU - Blobe, Gerard C.
PY - 2008/12/12
Y1 - 2008/12/12
N2 - Transforming growth factor-β (TGF-β) signals through three highly conserved cell surface receptors, the type III TGF-β receptor (TβRIII), the type II TGF-β receptor (TβRII), and the type I TGF-β receptor (TβRI) to regulate diverse cellular processes including cell proliferation, differentiation, migration, and apoptosis. Although TβRI and TβRII undergo ligand-independent endocytosis by both clathrin-mediated endocytosis, resulting in enhanced signaling, and clathrin-independent endocytosis, resulting in receptor degradation, the mechanism and function of TβRIII endocytosis is poorly understood. TβRIII is a heparan sulfate proteoglycan with a short cytoplasmic tail that functions as a TGF-β superfamily co-receptor, contributing to TGF-β signaling through mechanisms yet to be fully defined. We have reported previously that TβRIII endocytosis, mediated by a novel interaction with βarrestin-2, results in decreased TGF-β signaling. Here we demonstrate that TβRIII undergoes endocytosis in a ligand and glycosaminoglycan modification-independent and cytoplasmic domain-dependent manner, with the interaction of Thr-841 in the cytoplasmic domain of TβRIII with β-arrestin2 enhancing TβRIII endocytosis. TβRIII undergoes both clathrin-mediated and clathrin-independent endocytosis. Importantly, inhibition of the clathrin-independent, lipid raft pathway, but not of the clathrin-dependent pathway, results in decreased TGF-β1 induced Smad2 and p38 phosphorylation, supporting a specific role for clathrin-independent endocytosis of TβRIII in regulating both Smad-dependent and Smad-independent TGF-β signaling.
AB - Transforming growth factor-β (TGF-β) signals through three highly conserved cell surface receptors, the type III TGF-β receptor (TβRIII), the type II TGF-β receptor (TβRII), and the type I TGF-β receptor (TβRI) to regulate diverse cellular processes including cell proliferation, differentiation, migration, and apoptosis. Although TβRI and TβRII undergo ligand-independent endocytosis by both clathrin-mediated endocytosis, resulting in enhanced signaling, and clathrin-independent endocytosis, resulting in receptor degradation, the mechanism and function of TβRIII endocytosis is poorly understood. TβRIII is a heparan sulfate proteoglycan with a short cytoplasmic tail that functions as a TGF-β superfamily co-receptor, contributing to TGF-β signaling through mechanisms yet to be fully defined. We have reported previously that TβRIII endocytosis, mediated by a novel interaction with βarrestin-2, results in decreased TGF-β signaling. Here we demonstrate that TβRIII undergoes endocytosis in a ligand and glycosaminoglycan modification-independent and cytoplasmic domain-dependent manner, with the interaction of Thr-841 in the cytoplasmic domain of TβRIII with β-arrestin2 enhancing TβRIII endocytosis. TβRIII undergoes both clathrin-mediated and clathrin-independent endocytosis. Importantly, inhibition of the clathrin-independent, lipid raft pathway, but not of the clathrin-dependent pathway, results in decreased TGF-β1 induced Smad2 and p38 phosphorylation, supporting a specific role for clathrin-independent endocytosis of TβRIII in regulating both Smad-dependent and Smad-independent TGF-β signaling.
UR - http://www.scopus.com/inward/record.url?scp=58049195151&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=58049195151&partnerID=8YFLogxK
U2 - 10.1074/jbc.M804741200
DO - 10.1074/jbc.M804741200
M3 - Article
C2 - 18845534
AN - SCOPUS:58049195151
SN - 0021-9258
VL - 283
SP - 34808
EP - 34818
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 50
ER -