Emotion detection using noisy EEG data

Mina Mikhail, Khaled El-Ayat, Rana El Kaliouby, James Coan, John J.B. Allen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

22 Scopus citations


Emotion is an important aspect in the interaction between humans. It is fundamental to human experience and rational decision-making. There is a great interest for detecting emotions automatically. A number of techniques have been employed for this purpose using channels such as voice and facial expressions. However, these channels are not very accurate because they can be affected by users' intentions. Other techniques use physiological signals along with electroencephalography (EEG) for emotion detection. However, these approaches are not very practical for real time applications because they either ask the participants to reduce any motion and facial muscle movement or reject EEG data contaminated with artifacts. In this paper, we propose an approach that analyzes highly contaminated EEG data produced from a new emotion elicitation technique. We also use a feature selection mechanism to extract features that are relevant to the emotion detection task based on neuroscience findings. We reached an average accuracy of 51% for joy emotion, 53% for anger, 58% for fear and 61% for sadness.

Original languageEnglish (US)
Title of host publicationProceedings of the 1st Augmented Human International Conference, AH '10
StatePublished - 2010
Event1st Augmented Human International Conference, AH'10 - Megeve, France
Duration: Apr 2 2010Apr 3 2010

Publication series

NameACM International Conference Proceeding Series


Other1st Augmented Human International Conference, AH'10


  • affective computing
  • brain signals
  • feature extraction
  • support vector machines

ASJC Scopus subject areas

  • Software
  • Human-Computer Interaction
  • Computer Vision and Pattern Recognition
  • Computer Networks and Communications


Dive into the research topics of 'Emotion detection using noisy EEG data'. Together they form a unique fingerprint.

Cite this