Emergence of an Antiferromagnetic Mott Insulating Phase in Hexagonal π-Conjugated Covalent Organic Frameworks

Simil Thomas, Hong Li, Jean Luc Bredas

Research output: Contribution to journalArticlepeer-review

27 Scopus citations


While the search for 2D organic semimetallic Dirac materials displaying, like graphene, a Dirac cone at the Fermi level remains active, attention is also being paid to the quantum phase transition from semimetal to antiferromagnet. Such a transition in graphene-like materials is predicted based on theoretical investigations of the 2D honeycomb lattice; it occurs (within a Hubbard model) when the on-site electron–electron Coulomb repulsion (U) is much larger than the nearest-neighbor inter-site electronic coupling (t). Here, monomers carrying long-lived radicals are considered and used as building blocks to design 2D hexagonal π-conjugated covalent organic frameworks (COFs). Both the nonmagnetic semimetallic phase and magnetically ordered phases are evaluated. It is found that the electronic coupling between adjacent radical centers in these COFs is more than an order of magnitude smaller than in graphene while the on-site Coulomb repulsion is reduced to a lesser extent. The resulting large U/t ratio drives these COFs into the antiferromagnetic side of the phase diagram. This work provides a first theoretical evidence of the realization of an antiferromagnetic Mott insulating phase in 2D π-conjugated COFs and allows a strategy to achieve quantum phase transitions from antiferromagnet to spin liquid and to semimetal to be outlined.

Original languageEnglish (US)
Article number1900355
JournalAdvanced Materials
Issue number17
StatePublished - Apr 25 2019
Externally publishedYes


  • Hubbard model
  • density-functional theory calculations
  • magnetic properties
  • organic semiconductors

ASJC Scopus subject areas

  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering


Dive into the research topics of 'Emergence of an Antiferromagnetic Mott Insulating Phase in Hexagonal π-Conjugated Covalent Organic Frameworks'. Together they form a unique fingerprint.

Cite this