Elevated temperatures drive abiotic and biotic degradation of organic matter in a peat bog under oxic conditions

Roya AminiTabrizi, Katerina Dontsova, Nathalia Graf Grachet, Malak M. Tfaily

Research output: Contribution to journalArticlepeer-review

21 Scopus citations


Understanding the effects of elevated temperatures on soil organic matter (SOM) decomposition pathways in northern peatlands is central to predicting their fate under future warming. Peatlands role as carbon (C) sink is dependent on both anoxic conditions and low temperatures that limit SOM decomposition. Previous studies have shown that elevated temperatures due to climate change can disrupt peatland's C balance by enhancing SOM decomposition and increasing CO2 emissions. However, little is known about how SOM decomposition pathways change at higher temperatures. Here, we used an integrated research approach to investigate the mechanisms behind enhanced CO2 emissions and SOM decomposition under elevated temperatures of surface peat soil collected from a raised and Sphagnum dominated mid-continental bog (S1 bog) peatland at the Marcel Experimental Forest in Minnesota, USA, incubated under oxic conditions at three different temperatures (4, 21, and 35 °C). Our results indicated that elevated temperatures could destabilize peatland's C pool via a combination of abiotic and biotic processes. In particular, temperature-driven changes in redox conditions can lead to abiotic destabilization of Fe-organic matter (phenol) complexes, previously an underestimated decomposition pathway in peatlands, leading to increased CO2 production and accumulation of polyphenol-like compounds that could further inhibit extracellular enzyme activities and/or fuel the microbial communities with labile compounds. Further, increased temperatures can alter strategies of microbial communities for nutrient acquisition via changes in the activities of extracellular enzymes by priming SOM decomposition, leading to enhanced CO2 emission from peatlands. Therefore, coupled biotic and abiotic processes need to be incorporated into process-based climate models to predict the fate of SOM under elevated temperatures and to project the likely impacts of environmental change on northern peatlands and CO2 emissions.

Original languageEnglish (US)
Article number150045
JournalScience of the Total Environment
StatePublished - Jan 15 2022


  • Biotic and abiotic processes
  • High resolution mass spectrometry
  • Peatlands
  • Soil organic matter
  • Temperature

ASJC Scopus subject areas

  • Environmental Engineering
  • Environmental Chemistry
  • Waste Management and Disposal
  • Pollution


Dive into the research topics of 'Elevated temperatures drive abiotic and biotic degradation of organic matter in a peat bog under oxic conditions'. Together they form a unique fingerprint.

Cite this