TY - JOUR
T1 - Elevated cyclic adenosine monophosphate ameliorates ischemia-reperfusion injury in rat cardiac allografts
AU - Murata, Seiichiro
AU - Miniati, Douglas N.
AU - Kown, Murray H.
AU - Koransky, Mark L.
AU - Balsam, Leora B.
AU - Lijkwan, Maarten A.
AU - Martens, Jasper M.
AU - Robbins, Robert C.
PY - 2003/7/1
Y1 - 2003/7/1
N2 - Background: Oxidative stress after ischemia and reperfusion leads to leukocyte activation, the production of injurious cytokines, and increased expression of inflammatory adhesion molecules. This initial event is one of the most important alloantigen-independent factors associated with graft coronary artery disease (GCAD). Cyclic adenosine monophosphate (cAMP) is an important second messenger that inhibits the expression of tumor necrosis factor α (TNF-α), vascular cell adhesion molecule 1 (VCAM-1), and endothelial leukocyte adhesion molecule 1 (ELAM-1) in vitro. Its levels decrease during organ preservation. We hypothesized that augmenting allograft cAMP levels with the water-soluble adenylate cyclase activator, NKH477, could decrease ischemia-reperfusion injury and inhibit the progression of GCAD. Methods: PVG to ACI rat heterotopic cardiac allografts, treated with NKH477 solution or vehicle, were reperfused for 4 hours or 90 days after 60 minutes of ischemia. We analyzed grafts for intracellular adhesion molecule 1 (ICAM-1), VCAM-1, and ELAM-1 mRNA expression; TNF-α and interleukin-6 (IL-6) protein expression; and myeloperoxidase activity. We also performed immunohistochemical analysis for ICAM-1 and VCAM-1 protein expression. At post-operative Day 90, the progression of GCAD had increased morphometrically. Results: NKH477-treated grafts had significantly decreased levels of myeloperoxidase activity compared with controls. In this group, TNF-α, IL-6, and VCAM-1 protein expression was inhibited; however, ICAM-1 and ELAM-1 expression did not alter. We found no differences in the degree of development of GCAD between groups. Conclusion: Although augmented intracellular cAMP prevented acute reperfusion injury, it was insufficient to prevent the development of GCAD. Intracellular adhesion molecule 1 and ELAM-1, whose expression NKH477 does not inhibit, may play important roles in the development of GCAD.
AB - Background: Oxidative stress after ischemia and reperfusion leads to leukocyte activation, the production of injurious cytokines, and increased expression of inflammatory adhesion molecules. This initial event is one of the most important alloantigen-independent factors associated with graft coronary artery disease (GCAD). Cyclic adenosine monophosphate (cAMP) is an important second messenger that inhibits the expression of tumor necrosis factor α (TNF-α), vascular cell adhesion molecule 1 (VCAM-1), and endothelial leukocyte adhesion molecule 1 (ELAM-1) in vitro. Its levels decrease during organ preservation. We hypothesized that augmenting allograft cAMP levels with the water-soluble adenylate cyclase activator, NKH477, could decrease ischemia-reperfusion injury and inhibit the progression of GCAD. Methods: PVG to ACI rat heterotopic cardiac allografts, treated with NKH477 solution or vehicle, were reperfused for 4 hours or 90 days after 60 minutes of ischemia. We analyzed grafts for intracellular adhesion molecule 1 (ICAM-1), VCAM-1, and ELAM-1 mRNA expression; TNF-α and interleukin-6 (IL-6) protein expression; and myeloperoxidase activity. We also performed immunohistochemical analysis for ICAM-1 and VCAM-1 protein expression. At post-operative Day 90, the progression of GCAD had increased morphometrically. Results: NKH477-treated grafts had significantly decreased levels of myeloperoxidase activity compared with controls. In this group, TNF-α, IL-6, and VCAM-1 protein expression was inhibited; however, ICAM-1 and ELAM-1 expression did not alter. We found no differences in the degree of development of GCAD between groups. Conclusion: Although augmented intracellular cAMP prevented acute reperfusion injury, it was insufficient to prevent the development of GCAD. Intracellular adhesion molecule 1 and ELAM-1, whose expression NKH477 does not inhibit, may play important roles in the development of GCAD.
UR - http://www.scopus.com/inward/record.url?scp=0037827024&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037827024&partnerID=8YFLogxK
U2 - 10.1016/S1053-2498(02)00651-4
DO - 10.1016/S1053-2498(02)00651-4
M3 - Article
C2 - 12873549
AN - SCOPUS:0037827024
SN - 1053-2498
VL - 22
SP - 802
EP - 809
JO - Journal of Heart and Lung Transplantation
JF - Journal of Heart and Lung Transplantation
IS - 7
ER -