@inbook{44360b7e6d344742828b4d9fda42c604,
title = "Electrophoretic Mobility Shift Assay and Dimethyl Sulfate Footprinting for Characterization of G-Quadruplexes and G-Quadruplex-Protein Complexes",
abstract = "DNA G-quadruplexes are globular nucleic acid secondary structures which occur throughout the human genome under physiological conditions. There is accumulating evidence supporting G-quadruplex involvement in a number of important aspects of genome functions, including transcription, replication, and genomic stability, and that protein and enzyme recognition of G-quadruplexes may represent a key event to regulate physiological or pathological pathways. Two important techniques to study G-quadruplexes and their protein interactions are the electrophoretic mobility shift assay (EMSA) and dimethyl sulfate (DMS) footprinting assay. EMSA, one of the most sensitive and robust methods for studying the DNA-protein interactions, can be used to determine the binding parameters and relative affinities of a protein for the G-quadruplex. DMS footprinting is a powerful assay for the initial characterization of G-quadruplexes, which can be used to deduce the guanine bases involved in the formation of G-tetrads under physiological salt conditions. DMS footprinting can also reveal important information in G-quadruplex-protein complexes on protein contacts and regional changes in DNA G-quadruplex upon protein binding. In this paper, we will provide a detailed protocol for the EMSA and DMS footprinting assays for characterization of G-quadruplexes and G-quadruplex-protein complexes. Expected outcomes and references to extensions of the method will be further discussed.",
keywords = "DNA, Dimethyl sulfate (DMS) footprinting, Electrophoresis, Electrophoretic mobility shift assay (EMSA), G-quadruplex, Protein",
author = "Buket Onel and Guanhui Wu and Daekyu Sun and Clement Lin and Danzhou Yang",
note = "Funding Information: This research was supported by the National Institutes of Health (R01CA122952 (DY), R01CA177585 (DY), and P30CA023168 (Purdue Center for Cancer Research)). We thank Dr. Megan Carver for her thoughtful suggestions and proofreading this chapter. Publisher Copyright: {\textcopyright} Springer Science+Business Media, LLC, part of Springer Nature 2019.",
year = "2019",
doi = "10.1007/978-1-4939-9666-7_11",
language = "English (US)",
series = "Methods in Molecular Biology",
publisher = "Humana Press Inc.",
pages = "201--222",
booktitle = "Methods in Molecular Biology",
}