Abstract
The role of triplet states in the electrogenerated chemiluminescence (ECL) of organic light-emitting diode (OLED) materials was investigated. The spectroscopic, electrochemical, and electrochemiluminescent properties of two phosphorescent materials, platinum(II) octaethylporphyrin (PtOEP) and tris(2-phenylpyridine)iridium(II) [Ir(ppy)3] are described. Radical cations and anions of PtOEP were generated in solution and recombined to produce ECL. The ECL from PtOEP was less than a 9,10-diphenylanthracene (DPA) standard. Ir(ppy)3 could be electro-oxidized and reduced in acetonitrile to produced ECL that was brighter than DPA. The light from both of these compounds was stable, and their emission spectra were the same as those reported for OLEDs based on these compounds.
Original language | English (US) |
---|---|
Pages (from-to) | E137-E142 |
Journal | Journal of the Electrochemical Society |
Volume | 149 |
Issue number | 5 |
DOIs | |
State | Published - May 2002 |
Externally published | Yes |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Renewable Energy, Sustainability and the Environment
- Condensed Matter Physics
- Surfaces, Coatings and Films
- Electrochemistry
- Materials Chemistry