Electric stimulation of neurons and neural networks in retinal prostheses

Erich W. Schmid, Wolfgang Fink, Robert Wilke

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

A computational model is presented that can be used as a tool in experimental research in retinal implants. In this model a target volume (i.e., a probe cylinder approximating a bipolar cell) in the retina is chosen, and the passive Heaviside cable equation is solved inside the target volume to calculate the depolarization of the cell membrane. The depolarization as a function of time indicates that shorter signals stimulate better, as long as the current does not change sign during stimulation of the retina. The model is equally applicable to epiretinal, subretinal, and suprachoroidal vision implants.

Original languageEnglish (US)
Title of host publication2013 6th International IEEE EMBS Conference on Neural Engineering, NER 2013
Pages1108-1111
Number of pages4
DOIs
StatePublished - 2013
Event2013 6th International IEEE EMBS Conference on Neural Engineering, NER 2013 - San Diego, CA, United States
Duration: Nov 6 2013Nov 8 2013

Publication series

NameInternational IEEE/EMBS Conference on Neural Engineering, NER
ISSN (Print)1948-3546
ISSN (Electronic)1948-3554

Other

Other2013 6th International IEEE EMBS Conference on Neural Engineering, NER 2013
Country/TerritoryUnited States
CitySan Diego, CA
Period11/6/1311/8/13

ASJC Scopus subject areas

  • Artificial Intelligence
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Electric stimulation of neurons and neural networks in retinal prostheses'. Together they form a unique fingerprint.

Cite this