Elasticity imaging using physics-informed neural networks: Spatial discovery of elastic modulus and Poisson's ratio

Ali Kamali, Mohammad Sarabian, Kaveh Laksari

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Elasticity imaging is a technique that discovers the spatial distribution of mechanical properties of tissue using deformation and force measurements under various loading conditions. Given the complexity of this discovery, most existing methods approximate only one material parameter while assuming homogeneous distributions for the others. We employ physics-informed neural networks (PINN) in linear elasticity problems to discover the space-dependent distribution of both elastic modulus (E) and Poisson's ratio (ν) simultaneously, using strain data, normal stress boundary conditions, and the governing physics. We validated our model on three examples. First, we experimentally loaded hydrogel samples with embedded stiff inclusions, representing tumorous tissue, and compared the approximations against ground truth determined through tensile tests. Next, using data from finite element simulation of a rectangular domain containing a stiff circular inclusion, the PINN model accurately localized the inclusion and estimated both E and ν. We observed that in a heterogeneous domain, assuming a homogeneous ν distribution increases estimation error for stiffness as well as the area of the stiff inclusion, which could have clinical importance when determining size and stiffness of tumorous tissue. Finally, our model accurately captured spatial distribution of mechanical properties and the tissue interfaces on data from another computational model, simulating uniaxial loading of a rectangular hydrogel sample containing a human brain slice with distinct gray matter and white matter regions and complex geometrical features. This elasticity imaging implementation has the potential to be used in clinical imaging scenarios to reliably discover the spatial distribution of mechanical parameters and identify material interfaces such as tumors. Statement of significance: Our work is the first implementation of physics-informed neural networks to reconstruct both material parameters – Young's modulus and Poisson's ratio – and stress distributions for isotropic linear elastic materials by having deformation and force measurements. We comprehensively validate our model using experimental measurements and synthetic data generated using finite element modeling. Our method can be implemented in clinical elasticity imaging scenarios to improve diagnosis of tumors and for mechanical characterization of biomaterials and biological tissues in a minimally invasive manner.

Original languageEnglish (US)
Pages (from-to)400-409
Number of pages10
JournalActa Biomaterialia
Volume155
DOIs
StatePublished - Jan 1 2023

Keywords

  • Deep learning
  • Elasticity imaging
  • Model-based elastography
  • Tissue biomechanics

ASJC Scopus subject areas

  • Biotechnology
  • Biomaterials
  • Biochemistry
  • Biomedical Engineering
  • Molecular Biology

Fingerprint

Dive into the research topics of 'Elasticity imaging using physics-informed neural networks: Spatial discovery of elastic modulus and Poisson's ratio'. Together they form a unique fingerprint.

Cite this