Efficient Variational Sequential Information Control

Jianwei Shen, Jason Pacheco

Research output: Contribution to journalConference articlepeer-review

Abstract

We develop a family of fast variational methods for sequential control in dynamic settings where an agent is incentivized to maximize information gain. We consider the case of optimal control in continuous nonlinear dynamical systems that prohibit exact evaluation of the mutual information (MI) reward. Our approach couples efficient message-passing inference with variational bounds on the MI objective under Gaussian projections. We also develop a Gaussian mixture approximation that enables exact MI evaluation under constraints on the component covariances. We validate our methodology in nonlinear systems with superior and faster control compared to standard particle-based methods. We show our approach improves the accuracy and efficiency of one-shot robotic learning with intrinsic MI rewards. Furthermore, we demonstrate that our method is applicable to a wider range of contexts, e.g., the active information acquisition problem.

Original languageEnglish (US)
Pages (from-to)3907-3915
Number of pages9
JournalProceedings of Machine Learning Research
Volume238
StatePublished - 2024
Externally publishedYes
Event27th International Conference on Artificial Intelligence and Statistics, AISTATS 2024 - Valencia, Spain
Duration: May 2 2024May 4 2024

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Efficient Variational Sequential Information Control'. Together they form a unique fingerprint.

Cite this