Effects of environment forcing on marine boundary layer cloud-drizzle processes

Peng Wu, Xiquan Dong, Baike Xi, Yangang Liu, Mandana Thieman, Patrick Minnis

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Determining the factors affecting drizzle formation in marine boundary layer (MBL) clouds remains a challenge for both observation and modeling communities. To investigate the roles of vertical wind shear and buoyancy (static instability) in drizzle formation, ground-based observations from the Atmospheric Radiation Measurement Program at the Azores are analyzed for two types of conditions. The type I clouds should last for at least 5 h and more than 90% time must be nondrizzling and then followed by at least 2 h of drizzling periods, while the type II clouds are characterized by mesoscale convection cellular structures with drizzle occur every 2 to 4 h. By analyzing the boundary layer wind profiles (direction and speed), it was found that either directional or speed shear is required to promote drizzle production in the type I clouds. Observations and a recent model study both suggest that vertical wind shear helps the production of turbulent kinetic energy (TKE), stimulates turbulence within cloud layer, and enhances drizzle formation near the cloud top. The type II clouds do not require strong wind shear to produce drizzle. The small values of lower tropospheric stability (LTS) and negative Richardson number (Ri) in the type II cases suggest that boundary layer instability plays an important role in TKE production and cloud-drizzle processes. By analyzing the relationships between LTS and wind shear for all cases and all time periods, a stronger connection was found between LTS and wind directional shear than that between LTS and wind speed shear.

Original languageEnglish (US)
Pages (from-to)4463-4478
Number of pages16
JournalJournal of geophysical research
Volume122
Issue number8
DOIs
StatePublished - 2017

ASJC Scopus subject areas

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Fingerprint

Dive into the research topics of 'Effects of environment forcing on marine boundary layer cloud-drizzle processes'. Together they form a unique fingerprint.

Cite this