Abstract
The agonist, and opioid antagonist, effects of intracerebroventricularly (ICV) given D-Phe-Cys-Tyr-D-Trp-Lys-Thr-Pen-Thr-NH2 (CTP), a cyclic analogue of somatostatin octapeptide, were evaluated using the micturition reflex of the anesthetized rat as the endpoint. Antagonist effects were evaluated against equieffective doses of selective mu [D-Ala2,NMPhe4,Gly-ol]enkephalin (DAGO) and delta [D-Pen2,D-Pen5] enkephalin (DPDPE) opioid agonists. At low ICV doses, CTP preferentially antagonized DPDPE rather than DAGO; increasing the dose of CTP further effectively antagonized both mu and delta agonists, while even higher doses showed an agonist effect alone which was not blocked by adrenergic, cholinergic or opioid antagonists. Selective opioid antagonist doses of CTP failed to block the inhibition of the micturition reflex produced by pentobarbital. Possible residual somatostatin like properties of CTP were tested by using somatostatin as a possible antagonist of equieffective doses of DPDPE and DAGO; somatostatin did not antagonize these agonists. Repeated exposure to CTP resulted in the development of acute tolerance to the agonist effect, and also prevented the inhibition of the reflex by high doses of somatostatin, with the converse experiment showing a similar pattern; thus, repeated somatostatin resulted in tolerance and subsequent cross-tolerance to the agonist effects of CTP. In animals tolerant to somatostatin, CTP nevertheless behaved as an opioid antagonist. The present results indicate that CTP possesses opioid antagonist properties in vivo which are pharmacological in nature but nevertheless retains residual somatostatin-like activity at higher doses.
Original language | English (US) |
---|---|
Pages (from-to) | 625-632 |
Number of pages | 8 |
Journal | Peptides |
Volume | 8 |
Issue number | 4 |
DOIs | |
State | Published - 1987 |
Keywords
- CTP
- Central inhibition of reflex bladder contractions
- Opioid bladder effects
- Somatostatin octapeptide opioid antagonist
ASJC Scopus subject areas
- Biochemistry
- Physiology
- Endocrinology
- Cellular and Molecular Neuroscience