Effect of thermochemistrya double modeling coneon hypersonic flow over

Michael E. Holloway, Kyle M. Hanquist, Iain D. Boyd

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Scopus citations

Abstract

The influence of different assumptions for thermochemistry modeling in hypersonic flow over a double-cone geometry is investigated. The double-cone geometry is simple but produces a complex shock wave/boundary layer interaction and nonequilibrium flow physics. This interaction sig-nificantly impacts the aerothermodynamic loading, in terms of surface pressure and heat transfer. Therefore, it is important that these interactions can be predicted with physical accuracy and numerical efficiency. A CFD analysis is used to study the double-cone in three different thermochemical cases: nonequilibrium flow, equilibrium flow, and frozen flow for five different mixtures of nitrogen and oxygen. Specific areas of interest include the thermochemistry model effects on the flow field and surface properties. The resulting aerodynamic loads are compared to experiments and indicate that thermochemistry modeling assumptions play a significant role in determining surface properties. It is also shown that heat loading is more sensitive to thermochemical modeling than drag and suggests that an accurate measurement of surface heat transfer is of particular interest. Careful analysis also reveals that high enthalpy and pure oxygen flows are particularly sensitive to the thermochemistry model assumed.

Original languageEnglish (US)
Title of host publicationAIAA Scitech 2019 Forum
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624105784
DOIs
StatePublished - 2019
Externally publishedYes
EventAIAA Scitech Forum, 2019 - San Diego, United States
Duration: Jan 7 2019Jan 11 2019

Publication series

NameAIAA Scitech 2019 Forum

Conference

ConferenceAIAA Scitech Forum, 2019
Country/TerritoryUnited States
CitySan Diego
Period1/7/191/11/19

ASJC Scopus subject areas

  • Aerospace Engineering

Fingerprint

Dive into the research topics of 'Effect of thermochemistrya double modeling coneon hypersonic flow over'. Together they form a unique fingerprint.

Cite this