TY - GEN
T1 - Effect of thermochemistrya double modeling coneon hypersonic flow over
AU - Holloway, Michael E.
AU - Hanquist, Kyle M.
AU - Boyd, Iain D.
N1 - Publisher Copyright:
� 2019 by German Aerospace Center (DLR). Published by the American Institute of Aeronautics and Astronautics, Inc.
PY - 2019
Y1 - 2019
N2 - The influence of different assumptions for thermochemistry modeling in hypersonic flow over a double-cone geometry is investigated. The double-cone geometry is simple but produces a complex shock wave/boundary layer interaction and nonequilibrium flow physics. This interaction sig-nificantly impacts the aerothermodynamic loading, in terms of surface pressure and heat transfer. Therefore, it is important that these interactions can be predicted with physical accuracy and numerical efficiency. A CFD analysis is used to study the double-cone in three different thermochemical cases: nonequilibrium flow, equilibrium flow, and frozen flow for five different mixtures of nitrogen and oxygen. Specific areas of interest include the thermochemistry model effects on the flow field and surface properties. The resulting aerodynamic loads are compared to experiments and indicate that thermochemistry modeling assumptions play a significant role in determining surface properties. It is also shown that heat loading is more sensitive to thermochemical modeling than drag and suggests that an accurate measurement of surface heat transfer is of particular interest. Careful analysis also reveals that high enthalpy and pure oxygen flows are particularly sensitive to the thermochemistry model assumed.
AB - The influence of different assumptions for thermochemistry modeling in hypersonic flow over a double-cone geometry is investigated. The double-cone geometry is simple but produces a complex shock wave/boundary layer interaction and nonequilibrium flow physics. This interaction sig-nificantly impacts the aerothermodynamic loading, in terms of surface pressure and heat transfer. Therefore, it is important that these interactions can be predicted with physical accuracy and numerical efficiency. A CFD analysis is used to study the double-cone in three different thermochemical cases: nonequilibrium flow, equilibrium flow, and frozen flow for five different mixtures of nitrogen and oxygen. Specific areas of interest include the thermochemistry model effects on the flow field and surface properties. The resulting aerodynamic loads are compared to experiments and indicate that thermochemistry modeling assumptions play a significant role in determining surface properties. It is also shown that heat loading is more sensitive to thermochemical modeling than drag and suggests that an accurate measurement of surface heat transfer is of particular interest. Careful analysis also reveals that high enthalpy and pure oxygen flows are particularly sensitive to the thermochemistry model assumed.
UR - http://www.scopus.com/inward/record.url?scp=85083943871&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85083943871&partnerID=8YFLogxK
U2 - 10.2514/6.2019-2281
DO - 10.2514/6.2019-2281
M3 - Conference contribution
AN - SCOPUS:85083943871
SN - 9781624105784
T3 - AIAA Scitech 2019 Forum
BT - AIAA Scitech 2019 Forum
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - AIAA Scitech Forum, 2019
Y2 - 7 January 2019 through 11 January 2019
ER -