TY - JOUR
T1 - Effect of silicic acid on arsenate and arsenite retention mechanisms on 6-L ferrihydrite
T2 - A spectroscopic and batch adsorption approach
AU - Gao, Xiaodong
AU - Root, Robert A.
AU - Farrell, James
AU - Ela, Wendell
AU - Chorover, Jon
N1 - Funding Information:
This research was supported by the National Institute for Environmental Health Sciences, NIEHS SRP Grant 2 P42 ES04940. The authors thank Mary Kay Amistadi for total metal and As speciation analysis. Portions of this research were carried out at Stanford Synchrotron Radiation Laboratory, a National User Facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences.
PY - 2013/11
Y1 - 2013/11
N2 - The competitive adsorption of arsenate and arsenite with silicic acid at the ferrihydrite-water interface was investigated over a wide pH range using batch sorption experiments, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy, and density functional theory (DFT) modeling. Batch sorption results indicate that the adsorption of arsenate and arsenite on the 6-L ferrihydrite surface exhibits a strong pH-dependence, and the effect of pH on arsenic sorption differs between arsenate and arsenite. Arsenate adsorption decreases consistently with increasing pH; whereas arsenite adsorption initially increases with pH to a sorption maximum at pH 7-9, where after sorption decreases with further increases in pH. Results indicate that competitive adsorption between silicic acid and arsenate is negligible under the experimental conditions; whereas strong competitive adsorption was observed between silicic acid and arsenite, particularly at low and high pH. In situ, flow-through ATR-FTIR data reveal that in the absence of silicic acid, arsenate forms inner-sphere, binuclear bidentate, complexes at the ferrihydrite surface across the entire pH range. Silicic acid also forms inner-sphere complexes at ferrihydrite surfaces throughout the entire pH range probed by this study (pH 2.8-9.0). The ATR-FTIR data also reveal that silicic acid undergoes polymerization at the ferrihydrite surface under the environmentally-relevant concentrations studied (e.g., 1.0. mM). According to ATR-FTIR data, arsenate complexation mode was not affected by the presence of silicic acid. EXAFS analyses and DFT modeling confirmed that arsenate tetrahedra were bonded to Fe metal centers via binuclear bidentate complexation with average As(V)-Fe bond distance of 3.27. Å. The EXAFS data indicate that arsenite forms both mononuclear bidentate and binuclear bidentate complexes with 6-L ferrihydrite as indicated by two As(III)-Fe bond distances of ~2.92-2.94 and 3.41-3.44. Å, respectively. The As-Fe bond distances in both arsenate and arsenite EXAFS spectra remained unchanged in the presence of Si, suggesting that whereas Si diminishes arsenite adsorption preferentially, it has a negligible effect on As-Fe bonding mechanisms.
AB - The competitive adsorption of arsenate and arsenite with silicic acid at the ferrihydrite-water interface was investigated over a wide pH range using batch sorption experiments, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy, and density functional theory (DFT) modeling. Batch sorption results indicate that the adsorption of arsenate and arsenite on the 6-L ferrihydrite surface exhibits a strong pH-dependence, and the effect of pH on arsenic sorption differs between arsenate and arsenite. Arsenate adsorption decreases consistently with increasing pH; whereas arsenite adsorption initially increases with pH to a sorption maximum at pH 7-9, where after sorption decreases with further increases in pH. Results indicate that competitive adsorption between silicic acid and arsenate is negligible under the experimental conditions; whereas strong competitive adsorption was observed between silicic acid and arsenite, particularly at low and high pH. In situ, flow-through ATR-FTIR data reveal that in the absence of silicic acid, arsenate forms inner-sphere, binuclear bidentate, complexes at the ferrihydrite surface across the entire pH range. Silicic acid also forms inner-sphere complexes at ferrihydrite surfaces throughout the entire pH range probed by this study (pH 2.8-9.0). The ATR-FTIR data also reveal that silicic acid undergoes polymerization at the ferrihydrite surface under the environmentally-relevant concentrations studied (e.g., 1.0. mM). According to ATR-FTIR data, arsenate complexation mode was not affected by the presence of silicic acid. EXAFS analyses and DFT modeling confirmed that arsenate tetrahedra were bonded to Fe metal centers via binuclear bidentate complexation with average As(V)-Fe bond distance of 3.27. Å. The EXAFS data indicate that arsenite forms both mononuclear bidentate and binuclear bidentate complexes with 6-L ferrihydrite as indicated by two As(III)-Fe bond distances of ~2.92-2.94 and 3.41-3.44. Å, respectively. The As-Fe bond distances in both arsenate and arsenite EXAFS spectra remained unchanged in the presence of Si, suggesting that whereas Si diminishes arsenite adsorption preferentially, it has a negligible effect on As-Fe bonding mechanisms.
UR - http://www.scopus.com/inward/record.url?scp=84885057433&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84885057433&partnerID=8YFLogxK
U2 - 10.1016/j.apgeochem.2013.09.005
DO - 10.1016/j.apgeochem.2013.09.005
M3 - Article
AN - SCOPUS:84885057433
SN - 0883-2927
VL - 38
SP - 110
EP - 120
JO - Applied Geochemistry
JF - Applied Geochemistry
ER -