TY - GEN
T1 - Effect of model scale on mechanical properties of rocks based on PFC3D modeling
AU - Ding, Xiaobin
AU - Zhang, Lianyang
PY - 2012
Y1 - 2012
N2 - This paper studies the effect of model scale on the simulated mechanical properties based on PFC3D modeling. The uniaxial compression tests of intact rocks are simulated. Three different particle size ratios, all having a uniform particle size distribution and the same average diameter, are considered. For all simulations, the same model length to diameter ratio of 2 and the same microscopic mechanical properties are utilized. By changing the model size represented by the model length to the average particle diameter ratio (L/d) at each particle size ratio, the unconfined compressive strength (UCS), Young's elastic modulus (E), and Poisson's ratio are determined based on the PFC3D simulations. The results show that the coefficients of variation of the simulated mechanical properties in PFC3D decrease significantly as L/d increases. To reach a specific variation level for the simulation results, the related minimum model size should be used. The results also show that both UCS and E increase with larger L/d, although the rate of increase decreases with L/d. The analysis indicates that the increase is caused by the decrease of model porosity with larger L/d. As for the Poisson's ratio, the scale effect can be ignored when L/d is large enough.
AB - This paper studies the effect of model scale on the simulated mechanical properties based on PFC3D modeling. The uniaxial compression tests of intact rocks are simulated. Three different particle size ratios, all having a uniform particle size distribution and the same average diameter, are considered. For all simulations, the same model length to diameter ratio of 2 and the same microscopic mechanical properties are utilized. By changing the model size represented by the model length to the average particle diameter ratio (L/d) at each particle size ratio, the unconfined compressive strength (UCS), Young's elastic modulus (E), and Poisson's ratio are determined based on the PFC3D simulations. The results show that the coefficients of variation of the simulated mechanical properties in PFC3D decrease significantly as L/d increases. To reach a specific variation level for the simulation results, the related minimum model size should be used. The results also show that both UCS and E increase with larger L/d, although the rate of increase decreases with L/d. The analysis indicates that the increase is caused by the decrease of model porosity with larger L/d. As for the Poisson's ratio, the scale effect can be ignored when L/d is large enough.
UR - http://www.scopus.com/inward/record.url?scp=84873272184&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84873272184&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84873272184
SN - 9781622765140
T3 - 46th US Rock Mechanics / Geomechanics Symposium 2012
SP - 2750
EP - 2756
BT - 46th US Rock Mechanics / Geomechanics Symposium 2012
T2 - 46th US Rock Mechanics / Geomechanics Symposium 2012
Y2 - 24 June 2012 through 27 June 2012
ER -