Effect of finite size joints on the deformability of jointed rock in three dimensions

P. H.S.W. Kulatilake, S. Wang, O. Stephansson

Research output: Contribution to journalArticlepeer-review

125 Scopus citations

Abstract

A numerical decomposition technique, which has emerged from a linking between joint geometry modelling and generation schemes and a distinct element code (3DEC), is used to evaluate the effects of joint geometry parameters of finite size joints on the deformability properties of jointed rock at the three-dimensional (3-D) level. Variation of deformability parameters of jointed rock with joint geometry parameters such as joint density, joint size/block size and joint orientation, are shown through 3-D plots. Relations are developed between deformability properties of jointed rock and fracture tensor parameters. An incrementally linear elastic, orthotropic constitutive model is suggested to represent the pre-failure mechanical behaviour of jointed rock. This constitutive model has captured the anisotropic, scale-dependent behaviour of jointed rock. In this model, the effect of the joint geometry network in the rock mass is incorporated in terms of fracture tensor components. Some insight is given related to estimation of Representative Elementary Volumes (REVs) and REV property values with respect to deformability properties of jointed rock.

Original languageEnglish (US)
Pages (from-to)479-501
Number of pages23
JournalInternational Journal of Rock Mechanics and Mining Sciences and
Volume30
Issue number5
DOIs
StatePublished - Oct 1993
Externally publishedYes

ASJC Scopus subject areas

  • Geotechnical Engineering and Engineering Geology
  • General Engineering

Fingerprint

Dive into the research topics of 'Effect of finite size joints on the deformability of jointed rock in three dimensions'. Together they form a unique fingerprint.

Cite this