Effect of CYP2E1 gene deletion in mice on expression of microsomal epoxide hydrolase in response to VCD exposure

Aileen F. Keating, Kathila S. Rajapaksa, I. Glenn Sipes, Patricia B. Hoyer

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Females are born with a finite number of primordial follicles. 4-Vinylcyclohexene diepoxide (VCD) is a metabolite formed by epoxidation of 4-vinylcyclohexene (VCH) via its two monoepoxides 1,2- and 7,8-4-vinylcyclohexene monoepoxide (VCM). VCD specifically destroys small preantral (primordial and small primary) follicles in the rodent ovary. The phase I enzyme, cytochrome P450 isoform 2E1 (CYP2E1) is involved in ovarian metabolism of VCM to VCD. Further, microsomal epoxide hydrolase (mEH) can detoxify VCD to an inactive tetrol (4-(1,2-dihydroxy)ethyl-1,2-dihydroxycyclohexane). This study evaluated the effects of VCD-induced ovotoxicity on mEH in CYP2E1+/+ and -/- mice (129S1/SvImJ background strain) using a postnatal day 4 mouse whole ovary culture system. The hypothesis of our study is that there is a relationship between CYP2E1 and mEH gene expression in the mouse ovary. Relative to control, VCD exposure caused follicle loss (p < 0.05) in ovaries from both genotypes; however, after 15 days, this loss was greater (p < 0.05) in CYP2E1+/+ ovaries. In a time course (2-15 days), relative to control, VCD (5μM) caused an increase (p < 0.05) in mEH mRNA by 0.5-fold (day 10) and 1.84-fold (day 15) in CYP2E1-/- but not +/+ ovaries. 7,12-Dimethylbenz[a]anthracene (DMBA) also destroys ovarian follicles but, unlike VCD, is bioactivated by mEH to an ovotoxic 3,4-diol-1,2-epoxide metabolite. Incubation of ovaries in increasing concentrations of DMBA (0.5-1 μM, 15 days) resulted in greater (p < 0.05) follicle loss in CYP2E1-/-, relative to +/+ ovaries. With greater mEH (CYP2E1-/-), increased follicle loss with DMBA (bioactivation) and decreased follicle loss with VCD (detoxification) support that ovarian expression of CYP2E1 and mEH may be linked.

Original languageEnglish (US)
Pages (from-to)351-359
Number of pages9
JournalToxicological Sciences
Volume105
Issue number2
DOIs
StatePublished - 2008

Keywords

  • Cytochrome P450 isoform 2E1
  • Microsomal epoxide hydrolase
  • VCD-induced ovotoxicity

ASJC Scopus subject areas

  • Toxicology

Fingerprint

Dive into the research topics of 'Effect of CYP2E1 gene deletion in mice on expression of microsomal epoxide hydrolase in response to VCD exposure'. Together they form a unique fingerprint.

Cite this