Effect of Composition and Microstructure on the Mechanical Stability of Perovskite Solar Cells

Nicholas Rolston, Adam D. Printz, Jared M. Tracy, Reinhold H. Dauskardt

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

We report on recent studies characterizing the intrinsic mechanical integrity of perovskite compositions and fully explore the role of various cation combinations, additives, and microstructure on perovskite cohesion. Adding cations to the perovskite decreased mechanical integrity, largely due to smaller grain sizes and increased concentration of PbI 2 . Microindentation hardness testing was performed to estimate the fracture toughness of single-crystal perovskite, and the results indicated perovskites are inherently fragile, even in the absence of grain boundaries and defects. Introducing plastically deformable cations led to a modest improvement in cohesion, and the most robust architecture was observed by infusing perovskite into a porous TiO 2 /ZrO 2 /C layer that provided extrinsic reinforcement to mechanical and environmental stressors.

Original languageEnglish (US)
Title of host publication2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, WCPEC 2018 - A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3509-3513
Number of pages5
ISBN (Electronic)9781538685297
DOIs
StatePublished - Nov 26 2018
Externally publishedYes
Event7th IEEE World Conference on Photovoltaic Energy Conversion, WCPEC 2018 - Waikoloa Village, United States
Duration: Jun 10 2018Jun 15 2018

Publication series

Name2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, WCPEC 2018 - A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC

Other

Other7th IEEE World Conference on Photovoltaic Energy Conversion, WCPEC 2018
Country/TerritoryUnited States
CityWaikoloa Village
Period6/10/186/15/18

Keywords

  • fracture
  • mechanical stability
  • module
  • perovskite solar cell
  • reliability

ASJC Scopus subject areas

  • Energy Engineering and Power Technology
  • Renewable Energy, Sustainability and the Environment
  • Electrical and Electronic Engineering
  • Electronic, Optical and Magnetic Materials

Fingerprint

Dive into the research topics of 'Effect of Composition and Microstructure on the Mechanical Stability of Perovskite Solar Cells'. Together they form a unique fingerprint.

Cite this