TY - JOUR
T1 - Effect of aerosol on the susceptibility and efficiency of precipitation in warm trade cumulus clouds
AU - Jiang, Hongli
AU - Feingold, Graham
AU - Sorooshian, Armin
PY - 2010/11
Y1 - 2010/11
N2 - Large-eddy simulations of warm, trade wind cumulus clouds are conducted for a range of aerosol conditions with a focus on precipitating clouds. Individual clouds are tracked over the course of their lifetimes. Precipitation rate decreases progressively as aerosol increases. For larger, precipitating clouds, the polluted clouds have longer lifetimes because of precipitation suppression. For clean aerosol conditions, there is good agreement between the average model precipitation rate and that calculated based on observed radar reflectivity Z and precipitation rate R relationships. Precipitation rate can be expressed as a power-law function of liquid water path (LWP) and Nd, to reasonable accuracy. The respective powers for LWP and Nd are of similar magnitude compared to those based on observational studies of stratocumulus clouds. The timeintegrated precipitation rate represented by a power-law function of LWP, Nd, and cloud lifetime is much more reliably predicted than is R expressed in terms of LWP and Nd alone. The precipitation susceptibility (So = -dlnR/dlnNd) that quantifies the sensitivity of precipitation to changes in Nd depends strongly on LWP and exhibits nonmonotonic behavior with a maximumat intermediate LWP values. The relationship between So and precipitation efficiency is explored and the importance of including dependence on Nd in the latter is highlighted. The results provide trade cumulus cloud population statistics, as well as relationships between microphysical/macrophysical properties and precipitation, that are amenable for use in larger-scale models.
AB - Large-eddy simulations of warm, trade wind cumulus clouds are conducted for a range of aerosol conditions with a focus on precipitating clouds. Individual clouds are tracked over the course of their lifetimes. Precipitation rate decreases progressively as aerosol increases. For larger, precipitating clouds, the polluted clouds have longer lifetimes because of precipitation suppression. For clean aerosol conditions, there is good agreement between the average model precipitation rate and that calculated based on observed radar reflectivity Z and precipitation rate R relationships. Precipitation rate can be expressed as a power-law function of liquid water path (LWP) and Nd, to reasonable accuracy. The respective powers for LWP and Nd are of similar magnitude compared to those based on observational studies of stratocumulus clouds. The timeintegrated precipitation rate represented by a power-law function of LWP, Nd, and cloud lifetime is much more reliably predicted than is R expressed in terms of LWP and Nd alone. The precipitation susceptibility (So = -dlnR/dlnNd) that quantifies the sensitivity of precipitation to changes in Nd depends strongly on LWP and exhibits nonmonotonic behavior with a maximumat intermediate LWP values. The relationship between So and precipitation efficiency is explored and the importance of including dependence on Nd in the latter is highlighted. The results provide trade cumulus cloud population statistics, as well as relationships between microphysical/macrophysical properties and precipitation, that are amenable for use in larger-scale models.
UR - http://www.scopus.com/inward/record.url?scp=78649476662&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78649476662&partnerID=8YFLogxK
U2 - 10.1175/2010JAS3484.1
DO - 10.1175/2010JAS3484.1
M3 - Article
AN - SCOPUS:78649476662
SN - 0022-4928
VL - 67
SP - 3525
EP - 3540
JO - Journal of the Atmospheric Sciences
JF - Journal of the Atmospheric Sciences
IS - 11
ER -