Economic performance of membrane distillation configurations in optimal solar thermal desalination systems

Vasiliki Karanikola, Sarah E. Moore, Akshay Deshmukh, Robert G Arnold, Menachem Elimelech, A. Eduardo Sáez

Research output: Contribution to journalArticlepeer-review

57 Scopus citations

Abstract

In this study we provide a comprehensive evaluation of the economic performance and viability of solar membrane distillation (MD). To achieve this goal, process models based on mass and energy balances were used to find the minimum cost of water in MD systems. Three MD configurations: direct contact, sweeping gas, and vacuum MD, were compared in terms of economic cost and energy requirements in optimized, solar-driven desalination systems constrained to produce 10 m3 d−1 of distillate from 3.5% or 15% salinity water. Simulation results were used to calculate the water production cost as a function of 13 decision variables, including equipment size and operational variables. Non-linear optimization was performed using the particle swarm algorithm to minimize water production costs and identify optimal values for all decision variables. Results indicate that vacuum MD outperforms alternative MD configurations both economically and energetically, desalting water at a cost of less than $15 per cubic meter of product water (both initial salt levels). The highest fraction of total cost for all configurations at each salinity level was attributed to the solar thermal collectors—approximately 25% of the total present value cost. Storing energy in any form was economically unfavorable; the optimization scheme selected the smallest battery and hot water tank size allowed. Direct contact MD consumed significantly more energy (primarily thermal) than other MD forms, leading to higher system economic costs as well.

Original languageEnglish (US)
Article number114164
JournalDesalination
Volume472
DOIs
StatePublished - Dec 15 2019

ASJC Scopus subject areas

  • General Chemistry
  • General Chemical Engineering
  • General Materials Science
  • Water Science and Technology
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Economic performance of membrane distillation configurations in optimal solar thermal desalination systems'. Together they form a unique fingerprint.

Cite this