Abstract
Voluntary wheel running (WR) by juvenile female rats was used as a noninterventional model of soleus muscle functional overload to study the regulation of insulin-stimulated glucose transport activity by the glucose transporter (GLUT-4 isoform) protein level and glycogen concentration. Soleus total protein content was significantly greater (+18%; P < 0.05) than in age- matched controls after 1 wk of WR, and this hypertrophic response continued in weeks 2-4 (+24-32%). GLUT-4 protein was 39% greater than in controls in 1- wk WR soleus, and this adaptation was accompanied by a similar increase in in vitro insulin-stimulated glucose transport activity (+29%). After 2 and 4 wk of WR, however, insulin-stimulated glucose transport activity had returned to control levels, despite a continued elevation (+25-28%) of GLUT-4 protein. At these two time points, glycogen concentration was significantly enhanced in WR soleus (+21-42%), which coincided with significant reductions in glycogen synthase activity ratios (-23 to -41%). These results indicate that, in this model of soleus muscle functional overload, the GLUT-4 protein level may initially regulate insulin-stimulated glucose transport activity in the absence of changes in other modifying factors. However, this regulation of glucose transport activity by GLUT-4 protein may be subsequently overridden by elevated glycogen concentration.
| Original language | English (US) |
|---|---|
| Pages (from-to) | 1862-1867 |
| Number of pages | 6 |
| Journal | Journal of Applied Physiology |
| Volume | 76 |
| Issue number | 5 |
| DOIs | |
| State | Published - 1994 |
Keywords
- carbohydrate metabolism
- exercise training
- insulin action
- skeletal muscle hypertrophy
ASJC Scopus subject areas
- Physiology
- Physiology (medical)