TY - JOUR
T1 - Earliest Galaxies in the JADES Origins Field
T2 - Luminosity Function and Cosmic Star Formation Rate Density 300 Myr after the Big Bang
AU - Robertson, Brant
AU - Johnson, Benjamin D.
AU - Tacchella, Sandro
AU - Eisenstein, Daniel J.
AU - Hainline, Kevin
AU - Arribas, Santiago
AU - Baker, William M.
AU - Bunker, Andrew J.
AU - Carniani, Stefano
AU - Cargile, Phillip A.
AU - Carreira, Courtney
AU - Charlot, Stephane
AU - Chevallard, Jacopo
AU - Curti, Mirko
AU - Curtis-Lake, Emma
AU - D’Eugenio, Francesco
AU - Egami, Eiichi
AU - Hausen, Ryan
AU - Helton, Jakob M.
AU - Jakobsen, Peter
AU - Ji, Zhiyuan
AU - Jones, Gareth C.
AU - Maiolino, Roberto
AU - Maseda, Michael V.
AU - Nelson, Erica
AU - Pérez-González, Pablo G.
AU - Puskás, Dávid
AU - Rieke, Marcia
AU - Smit, Renske
AU - Sun, Fengwu
AU - Übler, Hannah
AU - Whitler, Lily
AU - Williams, Christina C.
AU - Willmer, Christopher N.A.
AU - Willott, Chris
AU - Witstok, Joris
N1 - Publisher Copyright:
© 2024. The Author(s). Published by the American Astronomical Society.
PY - 2024/7/1
Y1 - 2024/7/1
N2 - We characterize the earliest galaxy population in the JADES Origins Field, the deepest imaging field observed with JWST. We make use of ancillary Hubble Space Telescope optical images (five filters spanning 0.4-0.9 μm) and novel JWST images with 14 filters spanning 0.8−5 μm, including seven medium-band filters, and reaching total exposure times of up to 46 hr per filter. We combine all our data at >2.3 μm to construct an ultradeep image, reaching as deep as ≈31.4 AB mag in the stack and 30.3-31.0 AB mag (5σ, r = 0.″1 circular aperture) in individual filters. We measure photometric redshifts and use robust selection criteria to identify a sample of eight galaxy candidates at redshifts z = 11.5−15. These objects show compact half-light radii of R 1/2 ∼ 50−200 pc, stellar masses of M ⋆ ∼ 107−108 M ☉, and star formation rates ∼ 0.1−1 M ☉ yr−1. Our search finds no candidates at 15 < z < 20, placing upper limits at these redshifts. We develop a forward-modeling approach to infer the properties of the evolving luminosity function without binning in redshift or luminosity that marginalizes over the photometric redshift uncertainty of our candidate galaxies and incorporates the impact of nondetections. We find a z = 12 luminosity function in good agreement with prior results, and that the luminosity function normalization and UV luminosity density decline by a factor of ∼2.5 from z = 12 to z = 14. We discuss the possible implications of our results in the context of theoretical models for evolution of the dark matter halo mass function.
AB - We characterize the earliest galaxy population in the JADES Origins Field, the deepest imaging field observed with JWST. We make use of ancillary Hubble Space Telescope optical images (five filters spanning 0.4-0.9 μm) and novel JWST images with 14 filters spanning 0.8−5 μm, including seven medium-band filters, and reaching total exposure times of up to 46 hr per filter. We combine all our data at >2.3 μm to construct an ultradeep image, reaching as deep as ≈31.4 AB mag in the stack and 30.3-31.0 AB mag (5σ, r = 0.″1 circular aperture) in individual filters. We measure photometric redshifts and use robust selection criteria to identify a sample of eight galaxy candidates at redshifts z = 11.5−15. These objects show compact half-light radii of R 1/2 ∼ 50−200 pc, stellar masses of M ⋆ ∼ 107−108 M ☉, and star formation rates ∼ 0.1−1 M ☉ yr−1. Our search finds no candidates at 15 < z < 20, placing upper limits at these redshifts. We develop a forward-modeling approach to infer the properties of the evolving luminosity function without binning in redshift or luminosity that marginalizes over the photometric redshift uncertainty of our candidate galaxies and incorporates the impact of nondetections. We find a z = 12 luminosity function in good agreement with prior results, and that the luminosity function normalization and UV luminosity density decline by a factor of ∼2.5 from z = 12 to z = 14. We discuss the possible implications of our results in the context of theoretical models for evolution of the dark matter halo mass function.
UR - http://www.scopus.com/inward/record.url?scp=85196569106&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85196569106&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ad463d
DO - 10.3847/1538-4357/ad463d
M3 - Article
AN - SCOPUS:85196569106
SN - 0004-637X
VL - 970
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
M1 - 31
ER -