Abstract
A novel modeling framework is proposed for dynamic scheduling of projects and workforce assignment in open source software development (OSSD). The goal is to help project managers in OSSD distribute workforce to multiple projects to achieve high efficiency in software development (e.g. high workforce utilization and short development time) while ensuring the quality of deliverables (e.g. code modularity and software security). The proposed framework consists of two models: 1) a system dynamic model coupled with a meta-heuristic to obtain an optimal schedule of software development projects considering their attributes (e.g. priority, effort, duration) and 2) an agent based model to represent the development community as a social network, where development managers form an optimal team for each project and balance the workload among multiple scheduled projects based on the optimal schedule obtained from the system dynamic model. To illustrate the proposed framework, a software enhancement request process in Kuali foundation is used as a case study. Survey data collected from the Kuali development managers, project managers and actual historical enhancement requests have been used to construct the proposed models. Extensive experiments are conducted to demonstrate the impact of varying parameters on the considered efficiency and quality.
Original language | English (US) |
---|---|
State | Published - 2011 |
Event | 61st Annual Conference and Expo of the Institute of Industrial Engineers - Reno, NV, United States Duration: May 21 2011 → May 25 2011 |
Other
Other | 61st Annual Conference and Expo of the Institute of Industrial Engineers |
---|---|
Country/Territory | United States |
City | Reno, NV |
Period | 5/21/11 → 5/25/11 |
Keywords
- Agent-based modeling
- Dynamic project scheduling
- System dynamics
- Workforce assignment
ASJC Scopus subject areas
- Industrial and Manufacturing Engineering