Abstract
Spherical robots are generally comprised of a spherical shell and an internal actuation unit. These robots have a variety of applications ranging from search and rescue to agriculture. Although one of the main advantages of spherical robots is their capability to operate on uneven surfaces, energy analysis and path planning of such systems have been studied only for flat terrains. This work introduces a novel approach to evaluate the dynamic equations, energy consumption, and separation analysis of these robots rolling on uneven terrains. The presented dynamics modeling, separation analysis, and energy analysis allow us to implement path planning algorithms to find an optimal path. One of the advantages of this work is that these algorithms can be used when either the analytical or the empirical information about the terrain is available.
Original language | English (US) |
---|---|
Article number | 9144386 |
Pages (from-to) | 6049-6056 |
Number of pages | 8 |
Journal | IEEE Robotics and Automation Letters |
Volume | 5 |
Issue number | 4 |
DOIs | |
State | Published - Oct 2020 |
Keywords
- Nonholonomic mechanisms and systems
- dynamics
- nonholonomic motion planning
ASJC Scopus subject areas
- Control and Systems Engineering
- Biomedical Engineering
- Human-Computer Interaction
- Mechanical Engineering
- Computer Vision and Pattern Recognition
- Computer Science Applications
- Control and Optimization
- Artificial Intelligence