Abstract
We present our discovery and analysis of dwarf galaxies in the NGC 3585 galaxy group by the Korea Microlensing Telescope Network (KMTNet) Supernova Program. Using deep stack images reaching ≃28 mag arcsec-2 in BVI, we discovered 46 dwarf galaxy candidates distributed in a field of 7 square degrees. The dwarf galaxy candidates exhibit a central surface brightness as faint as μ 0,V = 26.2 mag arcsec-2, with effective radii larger than 150 pc and total absolute magnitudes brighter than M V ≈ -10 mag, if at the distance of NGC 3585. The dwarf galaxy surface number density decreases with projected distance from NGC 3585. We estimate the background contamination to be about 20% based both on the number density profile and on diffuse galaxy counts in a control field. The dwarf galaxy colors and Sérsic structural parameters are consistent with those found for other dwarf galaxies. Unusually, there is no indication of a change in color or brightness in the dwarf galaxy candidates with projected distance from the group center. Approximately 20% of the candidates contain an unresolved nucleus. The nucleated fraction is larger for brighter (and redder) galaxies, but is independent of distance from the group center. We identify four ultra-diffuse galaxy candidates, all near the group center. We interpret these spatial properties as suggesting that the NGC 3585 group might be dynamically younger than the typical group. The galaxy luminosity function of the NGC 3585 group has a faint-end slope of α ≈ -1.39, which is roughly consistent with the slopes found for other nearby groups. The possible dependence of the slope on global group properties is still unclear and continues to motivate our homogeneous deep survey of dozens of nearby groups.
Original language | English (US) |
---|---|
Article number | 88 |
Journal | Astrophysical Journal |
Volume | 885 |
Issue number | 1 |
DOIs | |
State | Published - Nov 1 2019 |
Keywords
- galaxies: dwarf
- galaxies: groups: individual (NGC 3585)
ASJC Scopus subject areas
- Astronomy and Astrophysics
- Space and Planetary Science
Fingerprint
Dive into the research topics of 'Dwarf Galaxy Discoveries from the KMTNet Supernova Program. II. The NGC 3585 Group and Its Dynamical State'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
In: Astrophysical Journal, Vol. 885, No. 1, 88, 01.11.2019.
Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Dwarf Galaxy Discoveries from the KMTNet Supernova Program. II. The NGC 3585 Group and Its Dynamical State
AU - Park, Hong Soo
AU - Moon, Dae Sik
AU - Zaritsky, Dennis
AU - Kim, Sang Chul
AU - Lee, Youngdae
AU - Cha, Sang Mok
AU - Lee, Yongseok
N1 - Funding Information: Hong Soo Park Dae-Sik Moon Dennis Zaritsky Sang Chul Kim Youngdae Lee Sang-Mok Cha Yongseok Lee Hong Soo Park Dae-Sik Moon Dennis Zaritsky Sang Chul Kim Youngdae Lee Sang-Mok Cha Yongseok Lee Korea Astronomy and Space Science Institute, 776, Daedeokdae-ro, Yuseong-gu, Daejeon 34055, Republic of Korea Dept. of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4, Canada Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85719, USA Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea Department of Astronomy and Space Science, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea School of Space Research, Kyung Hee University, Yongin, Kyeonggi 17104, Republic of Korea Hong Soo Park, Dae-Sik Moon, Dennis Zaritsky, Sang Chul Kim, Youngdae Lee, Sang-Mok Cha and Yongseok Lee 2019-11-01 2019-11-01 10:42:04 cgi/release: Article released bin/incoming: New from .zip yes We present our discovery and analysis of dwarf galaxies in the NGC 3585 galaxy group by the Korea Microlensing Telescope Network (KMTNet) Supernova Program. Using deep stack images reaching ≃28 mag arcsec −2 in BVI , we discovered 46 dwarf galaxy candidates distributed in a field of 7 square degrees. The dwarf galaxy candidates exhibit a central surface brightness as faint as μ 0, V �=�26.2 mag arcsec −2 , with effective radii larger than 150 pc and total absolute magnitudes brighter than M V �≈�−10 mag, if at the distance of NGC 3585. The dwarf galaxy surface number density decreases with projected distance from NGC 3585. We estimate the background contamination to be about 20% based both on the number density profile and on diffuse galaxy counts in a control field. The dwarf galaxy colors and S�rsic structural parameters are consistent with those found for other dwarf galaxies. Unusually, there is no indication of a change in color or brightness in the dwarf galaxy candidates with projected distance from the group center. Approximately 20% of the candidates contain an unresolved nucleus. The nucleated fraction is larger for brighter (and redder) galaxies, but is independent of distance from the group center. We identify four ultra-diffuse galaxy candidates, all near the group center. We interpret these spatial properties as suggesting that the NGC 3585 group might be dynamically younger than the typical group. The galaxy luminosity function of the NGC 3585 group has a faint-end slope of α �≈�−1.39, which is roughly consistent with the slopes found for other nearby groups. The possible dependence of the slope on global group properties is still unclear and continues to motivate our homogeneous deep survey of dozens of nearby groups. � 2019. The American Astronomical Society. All rights reserved. Abraham R. G. and van Dokkum P. G. 2014 PASP 126 55 10.1086/674875 Abraham R. G. and van Dokkum P. G. PASP 1538-3873 126 935 55 2014 55 Afsariardchi N., Moon D.-S., Drout M. R. et al 2019 ApJ 881 22 10.3847/1538-4357/ab2be6 Afsariardchi N., Moon D.-S., Drout M. R. et al ApJ 0004-637X 881 1 22 2019 22 Aihara H., Arimoto N., Armstrong R. et al 2018 PASJ 70 S4 10.1093/pasj/psx066 Aihara H., Arimoto N., Armstrong R. et al PASJ 0004-6264 70 2018 S4 Antoniadis J., Moon D.-S., Ni Y. Q. et al 2017 ApJ 844 160 10.3847/1538-4357/aa706b Antoniadis J., Moon D.-S., Ni Y. Q. et al ApJ 0004-637X 844 2 160 2017 160 APASS 2015 The AAVSO Photometric All-Sky Survey: Data Release 9 https://www.aavso.org/apass/ APASS The AAVSO Photometric All-Sky Survey: Data Release 9 2015 Balogh M. L., Christlein D., Zabludoff A. I. and Zaritsky D. 2001 ApJ 557 117 10.1086/321670 Balogh M. L., Christlein D., Zabludoff A. I. and Zaritsky D. ApJ 0004-637X 557 1 117 2001 117 Bechtol K., Drlica-Wagner A., Balbinot E. et al 2015 ApJ 807 50 10.1088/0004-637X/807/1/50 Bechtol K., Drlica-Wagner A., Balbinot E. et al ApJ 0004-637X 807 1 50 2015 50 Behroozi P. S., Conroy C. and Wechsler R. H. 2010 ApJ 717 379 10.1088/0004-637X/717/1/379 Behroozi P. S., Conroy C. and Wechsler R. H. ApJ 0004-637X 717 1 379 2010 379 Bennet P., Sand D. J., Crnojević D. et al 2017 ApJ 850 109 10.3847/1538-4357/aa9180 Bennet P., Sand D. J., Crnojević D. et al ApJ 0004-637X 850 1 109 2017 109 Bennet P., Sand D. J., Crnojević D. et al 2019 arXiv:1906.03230 Bennet P., Sand D. J., Crnojević D. et al 2019 Benson A. J., Lacey C. G., Baugh C. M., Cole S. and Frenk C. S. 2002 MNRAS 333 156 10.1046/j.1365-8711.2002.05387.x Benson A. J., Lacey C. G., Baugh C. M., Cole S. and Frenk C. S. MNRAS 0035-8711 333 2002 156 Bertin E. 2006 ASP Conf. Ser. 351, Automatic Astrometric and Photometric Calibration with SCAMP ed C. Gabriel et al (San Francisco, CA: ASP) 112 Bertin E. ed Gabriel C. et al ASP Conf. Ser. 351, Automatic Astrometric and Photometric Calibration with SCAMP 2006 112 Bertin E., Mellier Y., Radovich M. et al 2002 ASP Conf. Ser. 281, The TERAPIX Pipeline ed D. A. Bohlender, D. Durand and T. H. Handley (San Francisco, CA: ASP) 228 Bertin E., Mellier Y., Radovich M. et al ed Bohlender D. A., Durand D. and Handley T. H. ASP Conf. Ser. 281, The TERAPIX Pipeline 2002 228 Brown S., Moon D.-S., Ni Y. Q. et al 2018 ApJ 860 21 10.3847/1538-4357/aabfe2 Brown S., Moon D.-S., Ni Y. Q. et al ApJ 0004-637X 860 1 21 2018 21 Carlsten S. G., Beaton R. L., Greco J. P. et al 2019a ApJL 878 L16 10.3847/2041-8213/ab24d2 Carlsten S. G., Beaton R. L., Greco J. P. et al ApJL 0004-637X 878 2019 L16 Carlsten S. G., Beaton R. L., Greco J. P. et al 2019b ApJ 879 13 10.3847/1538-4357/ab22c1 Carlsten S. G., Beaton R. L., Greco J. P. et al ApJ 0004-637X 879 1 13 2019 13 Chiboucas K., Karachentsev I. D. and Tully R. B. 2009 AJ 137 3009 10.1088/0004-6256/137/2/3009 Chiboucas K., Karachentsev I. D. and Tully R. B. AJ 1538-3881 137 2 3009 2009 3009 Cohen Y., van Dokkum P., Danieli S. et al 2018 ApJ 868 96 10.3847/1538-4357/aae7c8 Cohen Y., van Dokkum P., Danieli S. et al ApJ 0004-637X 868 2 96 2018 96 Cooper A. P., Cole S., Frenk C. S. et al 2010 MNRAS 406 744 10.1111/j.1365-2966.2010.16740.x Cooper A. P., Cole S., Frenk C. S. et al MNRAS 0035-8711 406 2010 744 Cortese L., Bendo G. J., Isaak K. G. et al 2010 MNRAS 403 L26 10.1111/j.1745-3933.2009.00808.x Cortese L., Bendo G. J., Isaak K. G. et al MNRAS 0035-8711 403 2010 L26 Côté P., Piatek S., Ferrarese L. et al 2006 ApJS 165 57 10.1086/504042 Côté P., Piatek S., Ferrarese L. et al ApJS 0067-0049 165 1 57 2006 57 Crnojević D., Sand D. J., Spekkens K. et al 2016 ApJ 823 19 10.3847/0004-637X/823/1/19 Crnojević D., Sand D. J., Spekkens K. et al ApJ 0004-637X 823 1 19 2016 19 Danieli S., van Dokkum P. and Conroy C. 2018 ApJ 856 69 10.3847/1538-4357/aaadfb Danieli S., van Dokkum P. and Conroy C. ApJ 0004-637X 856 1 69 2018 69 Danieli S., van Dokkum P., Merritt A. et al 2017 ApJ 837 136 10.3847/1538-4357/aa615b Danieli S., van Dokkum P., Merritt A. et al ApJ 0004-637X 837 2 136 2017 136 Drlica-Wagner A., Bechtol K., Rykoff E. S. et al 2015 ApJ 813 109 10.1088/0004-637X/813/2/109 Drlica-Wagner A., Bechtol K., Rykoff E. S. et al ApJ 0004-637X 813 2 109 2015 109 Ferguson H. C. and Sandage A. 1988 AJ 96 1520 10.1086/114903 Ferguson H. C. and Sandage A. AJ 1548-9558 96 1988 1520 Ferrarese L., Côté P., Sánchez-Janssen R. et al 2016 ApJ 824 10 10.3847/0004-637X/824/1/10 Ferrarese L., Côté P., Sánchez-Janssen R. et al ApJ 0004-637X 824 1 10 2016 10 Geha M., Wechsler R. H., Mao Y.-Y. et al 2017 ApJ 847 4 10.3847/1538-4357/aa8626 Geha M., Wechsler R. H., Mao Y.-Y. et al ApJ 0004-637X 847 1 4 2017 4 Georgiev I. Y. and Böker T. 2014 MNRAS 441 3570 10.1093/mnras/stu797 Georgiev I. Y. and Böker T. MNRAS 0035-8711 441 2014 3570 Greco J. P., Greene J. E., Strauss M. A. et al 2018 ApJ 857 104 10.3847/1538-4357/aab842 Greco J. P., Greene J. E., Strauss M. A. et al ApJ 0004-637X 857 2 104 2018 104 He M. Y., Moon D.-S., Neilson H. et al 2016 JKAS 49 209 10.5303/JKAS.2016.49.5.209 He M. Y., Moon D.-S., Neilson H. et al JKAS 1225-4614 49 2016 209 Janz J., Laurikainen E., Laine J., Salo H. and Lisker T. 2016 MNRAS 461 L82 10.1093/mnrasl/slw104 Janz J., Laurikainen E., Laine J., Salo H. and Lisker T. MNRAS 0035-8711 461 2016 L82 Karachentsev I. D., Makarov D. I. and Kaisina E. I. 2013 AJ 145 101 10.1088/0004-6256/145/4/101 Karachentsev I. D., Makarov D. I. and Kaisina E. I. AJ 1538-3881 145 4 101 2013 101 Kim E., Kim M., Hwang N. et al 2011 MNRAS 412 1881 10.1111/j.1365-2966.2010.18022.x Kim E., Kim M., Hwang N. et al MNRAS 0035-8711 412 2011 1881 Kim S.-L., Lee C-U., Park B.-G. et al 2016 JKAS 49 37 10.5303/JKAS.2016.49.1.037 Kim S.-L., Lee C-U., Park B.-G. et al JKAS 1225-4614 49 2016 37 Klypin A., Kravtsov A. V., Valenzuela O. and Prada F. 1999 ApJ 522 82 10.1086/307643 Klypin A., Kravtsov A. V., Valenzuela O. and Prada F. ApJ 0004-637X 522 1 82 1999 82 Lee M. G., Freedman W. L. and Madore B. F. 1993 ApJ 417 553 10.1086/173334 Lee M. G., Freedman W. L. and Madore B. F. ApJ 417 1993 553 Lee M. G., Kang J., Lee J. H. and Jang I. S. 2017 ApJ 844 157 10.3847/1538-4357/aa78fb Lee M. G., Kang J., Lee J. H. and Jang I. S. ApJ 0004-637X 844 2 157 2017 157 Lee Y., Moon D.-S., Kim S. C. et al 2019 ApJ 880 109 10.3847/1538-4357/ab2985 Lee Y., Moon D.-S., Kim S. C. et al ApJ 0004-637X 880 2 109 2019 109 Lee Y., Park H. S., Kim S. C. et al 2018 ApJ 859 5 10.3847/1538-4357/aabc53 Lee Y., Park H. S., Kim S. C. et al ApJ 0004-637X 859 1 5 2018 5 Lisker T., Grebel E. K. and Binggeli B. 2008 AJ 135 380 10.1088/0004-6256/135/1/380 Lisker T., Grebel E. K. and Binggeli B. AJ 1538-3881 135 1 380 2008 380 Lisker T., Grebel E. K., Binggeli B. and Glatt K. 2007 ApJ 660 1186 10.1086/513090 Lisker T., Grebel E. K., Binggeli B. and Glatt K. ApJ 0004-637X 660 2 1186 2007 1186 Ludwig J., Pasquali A., Grebel E. K. et al 2012 AJ 144 190 10.1088/0004-6256/144/6/190 Ludwig J., Pasquali A., Grebel E. K. et al AJ 1538-3881 144 6 190 2012 190 Lupton R. 2005 Transformations between SDSS magnitudes and other systems https://www.sdss3.org/dr10/algorithms/sdssUBVRITransform.php/ Lupton R. Transformations between SDSS magnitudes and other systems 2005 Makarov D. and Karachentsev I. 2011 MNRAS 412 2498 10.1111/j.1365-2966.2010.18071.x Makarov D. and Karachentsev I. MNRAS 0035-8711 412 2011 2498 Markwardt C. B. 2009 ASP Conf. Ser. 411, Astronomical Data Analysis Software and Systems XVIII ed D. A. Bohlender, D. Durand and P. Dowler (San Francisco, CA: ASP) 251 Markwardt C. B. ed Bohlender D. A., Durand D. and Dowler P. ASP Conf. Ser. 411, Astronomical Data Analysis Software and Systems XVIII 2009 251 McConnachie A. W. 2012 AJ 144 4 10.1088/0004-6256/144/1/4 McConnachie A. W. AJ 1538-3881 144 1 4 2012 4 McConnachie A. W., Irwin M. J., Ibata R. A. et al 2009 Natur 461 66 10.1038/nature08327 McConnachie A. W., Irwin M. J., Ibata R. A. et al Natur 461 2009 66 Merritt A., van Dokkum P. and Abraham R. 2014 ApJL 787 L37 10.1088/2041-8205/787/2/L37 Merritt A., van Dokkum P. and Abraham R. ApJL 0004-637X 787 2014 L37 Merritt A., van Dokkum P., Danieli S. et al 2016 ApJ 833 168 10.3847/1538-4357/833/2/168 Merritt A., van Dokkum P., Danieli S. et al ApJ 0004-637X 833 2 168 2016 168 Mieske S., Hilker M. and Infante L. 2003 A&A 403 43 10.1051/0004-6361:20030331 Mieske S., Hilker M. and Infante L. A&A 0004-6361 403 2003 43 Mihos J. C. 2016 IAU Symp. 317, The General Assembly of Galaxy Halos: Structure, Origin and Evolution ed A. Bragaglia (Cambridge: Cambridge Univ. Press) 27 Mihos J. C. ed Bragaglia A. IAU Symp. 317, The General Assembly of Galaxy Halos: Structure, Origin and Evolution 2016 27 Mihos J. C., Harding P., Feldmeier J. J. et al 2017 ApJ 834 16 10.3847/1538-4357/834/1/16 Mihos J. C., Harding P., Feldmeier J. J. et al ApJ 0004-637X 834 1 16 2017 16 Miville-Deschênes M.-A., Duc P.-A., Marleau F. et al 2016 A&A 593 A4 10.1051/0004-6361/201628503 Miville-Deschênes M.-A., Duc P.-A., Marleau F. et al A&A 0004-6361 593 2016 A4 Moon D.-S., Kim S. C., Lee J.-J. et al 2016 Proc. SPIE 9906 99064I 10.1117/12.2233921 Moon D.-S., Kim S. C., Lee J.-J. et al Proc. SPIE 9906 99064I 2016 Moore B., Ghigna S., Governato F. et al 1999 ApJL 524 L19 10.1086/312287 Moore B., Ghigna S., Governato F. et al ApJL 0004-637X 524 1999 L19 Müller O., Jerjen H. and Binggeli B. 2015 A&A 583 A79 10.1051/0004-6361/201526748 Müller O., Jerjen H. and Binggeli B. A&A 0004-6361 583 2015 A79 Müller O., Jerjen H. and Binggeli B. 2017a A&A 597 A7 10.1051/0004-6361/201628921 Müller O., Jerjen H. and Binggeli B. A&A 0004-6361 597 2017 A7 Müller O., Jerjen H. and Binggeli B. 2018 A&A 615 A105 10.1051/0004-6361/201832897 Müller O., Jerjen H. and Binggeli B. A&A 0004-6361 615 2018 A105 Müller O., Scalera R., Binggeli B. and Jerjen H. 2017b A&A 602 A119 10.1051/0004-6361/201730434 Müller O., Scalera R., Binggeli B. and Jerjen H. A&A 0004-6361 602 2017 A119 Pak M., Rey S.-C., Lisker T. et al 2014 MNRAS 445 630 10.1093/mnras/stu1722 Pak M., Rey S.-C., Lisker T. et al MNRAS 0035-8711 445 2014 630 Park H. S., Moon D.-S., Zaritsky D. et al 2017 ApJ 848 19 10.3847/1538-4357/aa88ab Park H. S., Moon D.-S., Zaritsky D. et al ApJ 0004-637X 848 1 19 2017 19 Presotto V., Iovino A., Scodeggio M. et al 2012 A&A 539 A55 10.1051/0004-6361/201118293 Presotto V., Iovino A., Scodeggio M. et al A&A 0004-6361 539 2012 A55 Press W. H. and Teukolsky S. A. 1998 Computers in Physics 2 (Melville, NY: AIP) 74 Press W. H. and Teukolsky S. A. Computers in Physics 2 1998 74 Rakos K. and Schombert J. 2004 AJ 127 1502 10.1086/381921 Rakos K. and Schombert J. AJ 1538-3881 127 3 1502 2004 1502 Roberts I. D., Parker L. C., Joshi G. D. and Evans F. A. 2015 MNRAS 448 L1 10.1093/mnrasl/slu188 Roberts I. D., Parker L. C., Joshi G. D. and Evans F. A. MNRAS 0035-8711 448 2015 L1 Román J. and Trujillo I. 2017a MNRAS 468 703 10.1093/mnras/stx438 Román J. and Trujillo I. MNRAS 0035-8711 468 2017 703 Román J. and Trujillo I. 2017b MNRAS 468 4039 10.1093/mnras/stx694 Román J. and Trujillo I. MNRAS 0035-8711 468 2017 4039 Schechter P. 1976 ApJ 203 297 10.1086/154079 Schechter P. ApJ 203 1976 297 Schlafly E. F. and Finkbeiner D. P. 2011 ApJ 737 103 10.1088/0004-637X/737/2/103 Schlafly E. F. and Finkbeiner D. P. ApJ 0004-637X 737 2 103 2011 103 Trentham N. and Tully R. B. 2002 MNRAS 335 712 10.1046/j.1365-8711.2002.05651.x Trentham N. and Tully R. B. MNRAS 0035-8711 335 2002 712 Trentham N. and Tully R. B. 2009 MNRAS 398 722 10.1111/j.1365-2966.2009.15189.x Trentham N. and Tully R. B. MNRAS 0035-8711 398 2009 722 Tully R. B., Courtois H. M., Dolphin A. E. et al 2013 AJ 146 86 10.1088/0004-6256/146/4/86 Tully R. B., Courtois H. M., Dolphin A. E. et al AJ 1538-3881 146 4 86 2013 86 Tully R. B., Libeskind N. I., Karachentsev I. D. et al 2015 ApJL 802 L25 10.1088/2041-8205/802/2/L25 Tully R. B., Libeskind N. I., Karachentsev I. D. et al ApJL 0004-637X 802 2015 L25 Turner M. L., Côté P., Ferrarese L. et al 2012 ApJS 203 5 10.1088/0067-0049/203/1/5 Turner M. L., Côté P., Ferrarese L. et al ApJS 0067-0049 203 1 5 2012 5 van der Burg R. F. J., Muzzin A. and Hoekstra H. 2016 A&A 590 A20 10.1051/0004-6361/201628222 van der Burg R. F. J., Muzzin A. and Hoekstra H. A&A 0004-6361 590 2016 A20 van Dokkum P. G., Abraham R., Merritt A. et al 2015 ApJL 798 L45 10.1088/2041-8205/798/2/L45 van Dokkum P. G., Abraham R., Merritt A. et al ApJL 0004-637X 798 2015 L45 Watkins A. E., Mihos J. C., Harding P. et al 2014 ApJ 791 38 10.1088/0004-637X/791/1/38 Watkins A. E., Mihos J. C., Harding P. et al ApJ 0004-637X 791 1 38 2014 38 Watkins A. E., Mihos J. C. and Harding P. 2015 ApJL 800 L3 10.1088/2041-8205/800/1/L3 Watkins A. E., Mihos J. C. and Harding P. ApJL 0004-637X 800 2015 L3 Wetzel A. R., Tinker J. L. and Conroy C. 2012 MNRAS 424 232 10.1111/j.1365-2966.2012.21188.x Wetzel A. R., Tinker J. L. and Conroy C. MNRAS 0035-8711 424 2012 232 Young T., Jerjen H., López-Sánchez Á. R. and Koribalski B. S. 2014 MNRAS 444 3052 10.1093/mnras/stu1646 Young T., Jerjen H., López-Sánchez Á. R. and Koribalski B. S. MNRAS 0035-8711 444 2014 3052 Zabludoff A. I. and Mulchaey J. S. 2000 ApJ 539 136 10.1086/309191 Zabludoff A. I. and Mulchaey J. S. ApJ 0004-637X 539 1 136 2000 136 Zaritsky D., Donnerstein R., Dey A. et al 2019 ApJS 240 1 10.3847/1538-4365/aaefe9 Zaritsky D., Donnerstein R., Dey A. et al ApJS 0067-0049 240 1 1 2019 1 Publisher Copyright: © 2019. The American Astronomical Society. All rights reserved.
PY - 2019/11/1
Y1 - 2019/11/1
N2 - We present our discovery and analysis of dwarf galaxies in the NGC 3585 galaxy group by the Korea Microlensing Telescope Network (KMTNet) Supernova Program. Using deep stack images reaching ≃28 mag arcsec-2 in BVI, we discovered 46 dwarf galaxy candidates distributed in a field of 7 square degrees. The dwarf galaxy candidates exhibit a central surface brightness as faint as μ 0,V = 26.2 mag arcsec-2, with effective radii larger than 150 pc and total absolute magnitudes brighter than M V ≈ -10 mag, if at the distance of NGC 3585. The dwarf galaxy surface number density decreases with projected distance from NGC 3585. We estimate the background contamination to be about 20% based both on the number density profile and on diffuse galaxy counts in a control field. The dwarf galaxy colors and Sérsic structural parameters are consistent with those found for other dwarf galaxies. Unusually, there is no indication of a change in color or brightness in the dwarf galaxy candidates with projected distance from the group center. Approximately 20% of the candidates contain an unresolved nucleus. The nucleated fraction is larger for brighter (and redder) galaxies, but is independent of distance from the group center. We identify four ultra-diffuse galaxy candidates, all near the group center. We interpret these spatial properties as suggesting that the NGC 3585 group might be dynamically younger than the typical group. The galaxy luminosity function of the NGC 3585 group has a faint-end slope of α ≈ -1.39, which is roughly consistent with the slopes found for other nearby groups. The possible dependence of the slope on global group properties is still unclear and continues to motivate our homogeneous deep survey of dozens of nearby groups.
AB - We present our discovery and analysis of dwarf galaxies in the NGC 3585 galaxy group by the Korea Microlensing Telescope Network (KMTNet) Supernova Program. Using deep stack images reaching ≃28 mag arcsec-2 in BVI, we discovered 46 dwarf galaxy candidates distributed in a field of 7 square degrees. The dwarf galaxy candidates exhibit a central surface brightness as faint as μ 0,V = 26.2 mag arcsec-2, with effective radii larger than 150 pc and total absolute magnitudes brighter than M V ≈ -10 mag, if at the distance of NGC 3585. The dwarf galaxy surface number density decreases with projected distance from NGC 3585. We estimate the background contamination to be about 20% based both on the number density profile and on diffuse galaxy counts in a control field. The dwarf galaxy colors and Sérsic structural parameters are consistent with those found for other dwarf galaxies. Unusually, there is no indication of a change in color or brightness in the dwarf galaxy candidates with projected distance from the group center. Approximately 20% of the candidates contain an unresolved nucleus. The nucleated fraction is larger for brighter (and redder) galaxies, but is independent of distance from the group center. We identify four ultra-diffuse galaxy candidates, all near the group center. We interpret these spatial properties as suggesting that the NGC 3585 group might be dynamically younger than the typical group. The galaxy luminosity function of the NGC 3585 group has a faint-end slope of α ≈ -1.39, which is roughly consistent with the slopes found for other nearby groups. The possible dependence of the slope on global group properties is still unclear and continues to motivate our homogeneous deep survey of dozens of nearby groups.
KW - galaxies: dwarf
KW - galaxies: groups: individual (NGC 3585)
UR - http://www.scopus.com/inward/record.url?scp=85075245935&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85075245935&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ab4794
DO - 10.3847/1538-4357/ab4794
M3 - Article
AN - SCOPUS:85075245935
SN - 0004-637X
VL - 885
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
M1 - 88
ER -